1. Opposite effects of tumor necrosis factor and soluble fibronectin on junctional adhesion molecule-A in endothelial cells
- Author
-
Martinez-Estrada, Ofelia M., Manzi, Luca, Tonetti, Paolo, Dejana, Elisabetta, and Bazzoni, Gianfranco
- Subjects
Junctional complexes (Epithelium) -- Research ,Inflammation -- Prevention ,Inflammation -- Research ,Endothelium -- Research ,Tumor necrosis factor -- Research ,Biological sciences - Abstract
Junctional adhesion molecule-A (JAM-A) regulates key inflammatory responses, such as edema formation and leukocyte transmigration. Although it has been reported that the inflammatory cytokine tumor necrosis factor (TNF) causes the disassembly of JAM-A from the intercellular junctions, the mechanism has not been elucidated fully. Here, we report that TNF enhances the solubility of JAM-A in Triton X-100 and increases the amount of Triton-soluble JAM-A dimers at the cell surface but does not change the total levels of cellular JAM-A. Thus we hypothesized that TNF causes the redistribution of JAM-A from the junctions to the cell surface and that junction disassembly is sufficient to account for JAM-A redistribution. Intriguingly, however, even after complete disassembly of the junctions (with EDTA and trypsin), higher levels of JAM-A are detectable at the cell surface (by FACS analysis) in cells that had been previously incubated in the presence of TNF than in its absence. Thus we propose that TNF causes not only the disassembly of JAM-A from the junctions and its subsequent redistribution to the cell surface but also its dispersal in such a way that JAM-A becomes more easily accessible to the antibodies used for FACS analysis. Finally, we evaluated whether soluble fibronectin might attenuate the effects of TNF on JAM-A, as some inflammatory conditions are associated with the depletion of plasma fibronectin. We found that fibronectin reduces the effect of TNF on the disassembly of JAM-A, but not on its dispersal, thus further stressing that disassembly and dispersal can be functionally dissociated. inflammation; junctions; permeability
- Published
- 2005