1. Engineering Escherichia coli for D-allulose biosynthesis from glycerol.
- Author
-
Guo Q, Dong ZX, Luo X, Zheng LJ, Fan LH, and Zheng HD
- Subjects
- Bioreactors microbiology, Escherichia coli Proteins genetics, Escherichia coli Proteins metabolism, Fructose, Escherichia coli genetics, Escherichia coli metabolism, Metabolic Engineering methods, Glycerol metabolism, Fermentation
- Abstract
D-allulose, a naturally occurring monosaccharide, is present in small quantities in nature. It is considered a valuable low-calorie sweetener due to its low absorption in the digestive tract and zero energy for growth. Most of the recent efforts to produce D-allulose have focused on in vitro enzyme catalysis. However, microbial fermentation is emerging as a promising alternative that offers the advantage of combining enzyme manufacturing and product synthesis within a single bioreactor. Here, a novel approach was proposed for the efficient biosynthesis of D-allulose from glycerol using metabolically engineered Escherichia coli. FbaA, Fbp, AlsE, and A6PP were used to construct the D-allulose synthesis pathway. Subsequently, PfkA, PfkB, and Pgi were disrupted to block the entry of the intermediate fructose-6-phosphate (F6P) into the Embden-Meyerhof-Parnas (EMP) and pentose phosphate (PP) pathways. Additionally, GalE and FryA were inactivated to reduce D-allulose consumption by the cells. Finally, a fed-batch fermentation process was implemented to optimize the performance of the cell factory. As a result, the titer of D-allulose reached 7.02 g/L with a maximum yield of 0.287 g/g., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF