Lovett, Gary M., Jones, Clive G., Turner, Monica G., Weathers, Kathleen C., Naiman, Robert J., Bechtold, J. Scott, Drake, Deanne C., Latterell, Joshua J., O'Keefe, Thomas C., and Balian, Estelle V.
Riparian systems epitomize heterogeneity. As transitional semiterrestrial areas influenced by water, they usually extend from the edges of water bodies to the edges of upland terraces. Riparian systems often exhibit strong biophysical gradients, which control energy and elemental fluxes, and are highly variable in time and space.These attributes contribute to substantial biodiversity, elevated biomass and productivity, and an array of habitats and refugia. Focusing on riparian systems of medium-sized floodplain rivers, we describe heterogeneity at multiple space and time scales, illustrate interactions among scales, and propose a conceptual model integrating major system components. We show how climatic and geologic processes shape an array of physical templates, describe how disturbances redistribute materials, and illustrate how soils and subsurface processes form and are sustained. Collectively, these processes strongly influence plant productivity and fluxes of channel-shaping large woody debris (LWD). Ultimately, riparian ecosystem function integrates climate (past and present), geologic materials and processes, soil development and attendant microbial transformations, subsurface characteristics, plant productivity, animal activities, and LWD—and the active, continuous and variable feedbacks between the individual components. [ABSTRACT FROM AUTHOR]