1. Novel PUF-Based Error Detection Methods in Finite State Machines.
- Author
-
Hammouri, Ghaith, Akdemir, Kahraman, and Sunar, Berk
- Abstract
We propose a number of techniques for securing finite state machines (FSMs) against fault injection attacks. The proposed security mechanisms are based on physically unclonable functions (PUFs), and they address different fault injection threats on various parts of the FSM. The first mechanism targets the protection of state-transitions in a specific class of FSMs. The second mechanism addresses the integrity of secret information. This is of particular interest in cryptographic FSMs which require a secret key. Finally, the last mechanism we propose introduces a new fault-resilient error detection network (EDN). Previous designs for EDNs always assume resilience to fault injection attacks without providing a particular construction. The PUF-based EDN design is suitable for a variety of applications, and is essential for most fault resilient state machines. Due to the usage of PUFs in the proposed architectures, the state machine will enjoy security at the logical level as well as the physical level. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF