Abstract: Density-based clustering methods extract high density clusters which are separated by regions of lower density. HDBSCAN* is an existing algorithm for producing a density-based cluster hierarchy. To obtain clusters from this hierarchy it includes an instance of FOSC(Framework for Optimal Selection of Clusters) to extract significant clusters, based on a measure known as cluster stability. We introduce CASAR (Compact And Separation Adjusted Ratio), a new algorithm for extracting significant clusters from an HDBSCAN* hierarchy. CASAR issimilar to FOSC, but defines local cluster quality differently and also uses a different aggregation method for comparing the quality of descendant clusters to ancestors in the hierarchy. The local cluster quality that CASAR uses is based on the validation index DBCV (Density-Based Cluster Validation). CASAR is designed to extract individual density-based clusters from subspaces, and is not meant to be a general purpose replacement for cluster stability. We also introduce a new semi-supervised density-based method for finding relevant subspaces. Given a set of should-link objects that belong to an undiscovered cluster, our method finds an appropriate set of attributes for extracting the cluster. Our method makes use of well-established qualities of density-based clusters, and as such, it can be used as a pre-processing step for a wide variety of different density-based clustering algorithms. We combine this method with HDBSCAN* and CASAR to produce a semi-supervised density-based projected clustering algorithm. In a series of experiments, we compare CASAR and cluster stability on both synthetic data and on real data sets. We also compare our semi-supervised density-based projected clustering algorithm to an existing semi-supervised projected clustering algorithm and to a well-known unsupervised projected clustering algorithm. We conclude this thesis with a summary of the strengths and weaknesses of our method, a summary of experimental findings, and a discussion about possible directions for future work.