1. Design and Assessment of Vibrotactile Biofeedback and Instructional Systems for Balance Rehabilitation Applications.
- Author
-
Lee, Beom-Chan
- Subjects
- Vibrotactile Biofeeback, Balance Rehabilitation, Balance Control, Sensory Augmentation, Intelligent Tutoring Systems, Cell Phone
- Abstract
Sensory augmentation, a type of biofeedback, is a technique for supplementing or reinforcing native sensory inputs. In the context of balance-related applications, it provides users with additional information about body motion, usually with respect to the gravito-inertial environment. Multiple studies have demonstrated that biofeedback, regardless of the feedback modality (i.e., vibrotactile, electrotactile, auditory), decreases body sway during real-time use within a laboratory setting. However, in their current laboratory-based form, existing vibrotactile biofeedback devices are not appropriate for use in clinical and/or home-based rehabilitation settings due to the expense, size, and operating complexity of the instrumentation required. This dissertation describes the design, development, and preliminary assessment of two technologies that support clinical and home-based balance rehabilitation training. The first system provides vibrotactile-based instructional motion cues to a trainee based on the measured difference between the expert’s and trainee’s motions. The design of the vibrotactile display is supported by a study that characterizes the non-volitional postural responses to vibrotactile stimulation applied to the torso. This study shows that vibration applied individually by tactors over the internal oblique and erector spinae muscles induces a postural shift of the order of one degree oriented in the direction of the stimulation. Furthermore, human performance is characterized both experimentally and theoretically when the expert–trainee error thresholds and nature of the control signal are varied. The results suggest that expert–subject cross-correlation values were maximized and position errors and time delays were minimized when the controller uses a 0.5 error threshold and proportional plus derivative feedback control signal, and that subject performance decreases as motion speed and complexity increase. The second system provides vibrotactile biofeedback about body motion using a cell phone. The system is capable of providing real-time vibrotactile cues that inform corrective trunk tilt responses. When feedback is available, both healthy subjects and those with vestibular involvement significantly reduce their anterior-posterior or medial-lateral root-mean-square body sway, have significantly smaller elliptical area fits to their sway trajectory, spend a significantly greater mean percentage time within the no feedback zone, and show a significantly greater A/P or M/L mean power frequency.
- Published
- 2012