1. Quasi-likelihood inference for modulated non-stationary time series
- Author
-
Guillaumin, Arthur P.
- Subjects
519.5 - Abstract
In this thesis we propose a new class of non-stationary time series models and a quasi-likelihood inference method that is computationally efficient and consistent for that class of processes. A standard class of non-stationary processes is that of locally-stationary processes, where a smooth time-varying spectral representation extends the spectral representation of stationary time series. This allows us to apply stationary estimation methods when analysing slowly-varying non-stationary processes. However, stationary inference methods may lead to large biases for more rapidly-varying non-stationary processes. We present a class of such processes based on the framework of modulated processes. A modulated process is formed by pointwise multiplying a stationary process, called the latent process, by a sequence, called the modulation sequence. Our interest lies in estimating a parametric model for the latent stationary process from observing the modulated process in parallel with the modulation sequence. Very often exact likelihood is not computationally viable when analysing large time series datasets. The Whittle likelihood is a stan- dard quasi-likelihood for stationary time series. Our inference method adapts this function by specifying the expected periodogram of the modulated process for a given parameter vector of the latent time series model, and then fits this quantity to the sample periodogram. We prove that this approach conserves the computational efficiency and convergence rate of the Whittle likelihood under increasing sample size. Finally, our real-data application is concerned with the study of ocean surface currents. We analyse bivariate non-stationary velocities obtained from instruments following the ocean surface currents, and infer key physical quantities from this dataset. Our simulations show the benefit of our modelling and estimation method.
- Published
- 2018