13 results on '"Cas12a"'
Search Results
2. Multiplexed Transactivation of Mammalian Cells Using dFnCas12a-VPR
- Author
-
Ceroni, Francesca, Polizzi, Karen, Bryson, James W., Rosser, Susan J., Ceroni, Francesca, Polizzi, Karen, Bryson, James W., and Rosser, Susan J.
- Abstract
CRISPR activation provides an invaluable tool for experimental biologists to convert correlations into causation by directly observing phenotypic changes upon targeted changes in gene expression. With few exceptions, most diseases are caused by complex polygenic interactions, with multiple genes contributing to define the output of a gene network. As such researchers are increasingly interested in tools that can offer not only control but also the capacity to simultaneously upregulate multiple genes. The adaptation of CRISPR/Cas12a has provided a system especially suited to the tightly coordinated overexpression of multiple targeted genes. Here we describe an approach to test for active targeting crRNAs for dFnCas12a-VPR, before proceeding to generate and validate longer crRNA arrays for multiplexed targeting of genes of interest., CRISPR activation provides an invaluable tool for experimental biologists to convert correlations into causation by directly observing phenotypic changes upon targeted changes in gene expression. With few exceptions, most diseases are caused by complex polygenic interactions, with multiple genes contributing to define the output of a gene network. As such researchers are increasingly interested in tools that can offer not only control but also the capacity to simultaneously upregulate multiple genes. The adaptation of CRISPR/Cas12a has provided a system especially suited to the tightly coordinated overexpression of multiple targeted genes. Here we describe an approach to test for active targeting crRNAs for dFnCas12a-VPR, before proceeding to generate and validate longer crRNA arrays for multiplexed targeting of genes of interest.
- Published
- 2024
3. Endogenous Tagging of Ciliary Genes in Human RPE1 Cells for Live-Cell Imaging
- Author
-
Kuhns, Stefanie, Juhl, Alice Dupont, Anvarian, Zeinab, Wüstner, Daniel, Pedersen, Lotte B., Andersen, Jens S., Kuhns, Stefanie, Juhl, Alice Dupont, Anvarian, Zeinab, Wüstner, Daniel, Pedersen, Lotte B., and Andersen, Jens S.
- Abstract
CRISPR-mediated endogenous tagging of genes provides unique possibilities to explore the function and dynamic subcellular localization of proteins in living cells. Here, we describe experimental strategies for endogenous PCR-tagging of ciliary genes in human RPE1 cells and how image acquisition and analysis of the expressed fluorescently tagged proteins can be utilized to study the dynamic ciliary processes of intraflagellar transport and vesicular trafficking.
- Published
- 2024
4. Comprehensive Genome Engineering Toolbox for Microalgae Nannochloropsis oceanica Based on CRISPR-Cas Systems
- Author
-
Naduthodi, Mihris I.S., Sudfeld, Christian, Avitzigiannis, Emmanouil Klimis, Trevisan, Nicola, van Lith, Eduard, Alcaide Sancho, Javier, D'Adamo, Sarah, Barbosa, Maria, van der Oost, John, Naduthodi, Mihris I.S., Sudfeld, Christian, Avitzigiannis, Emmanouil Klimis, Trevisan, Nicola, van Lith, Eduard, Alcaide Sancho, Javier, D'Adamo, Sarah, Barbosa, Maria, and van der Oost, John
- Abstract
Microalgae can produce industrially relevant metabolites using atmospheric CO2 and sunlight as carbon and energy sources, respectively. Developing molecular tools for high-throughput genome engineering could accelerate the generation of tailored strains with improved traits. To this end, we developed a genome editing strategy based on Cas12a ribonucleoproteins (RNPs) and homology-directed repair (HDR) to generate scarless and markerless mutants of the microalga Nannochloropsis oceanica. We also developed an episomal plasmid-based Cas12a system for efficiently introducing indels at the target site. Additionally, we exploited the ability of Cas12a to process an associated CRISPR array to perform multiplexed genome engineering. We efficiently targeted three sites in the host genome in a single transformation, thereby making a major step toward high-throughput genome engineering in microalgae. Furthermore, a CRISPR interference (CRISPRi) tool based on Cas9 and Cas12a was developed for effective downregulation of target genes. We observed up to 85% reduction in the transcript levels upon performing CRISPRi with dCas9 in N. oceanica. Overall, these developments substantially accelerate genome engineering efforts in N. oceanica and potentially provide a general toolbox for improving other microalgal strains.
- Published
- 2021
5. Estudio de diversos parámetros que afectan la edición genómica mediada por CRISPR-Cas12a/Cas9 en Nicotiana benthamiana
- Author
-
Gadea Vacas, José, Vázquez Vilar, Marta, Orzáez Calatayud, Diego Vicente, Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia, Sánchez Vicente, Javier, Gadea Vacas, José, Vázquez Vilar, Marta, Orzáez Calatayud, Diego Vicente, Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia, and Sánchez Vicente, Javier
- Abstract
[ES] En los últimos años, la tecnología CRISPR ha revolucionado la ingeniería del genoma en las plantas. El sistema CRISPR / Cas ofrece una alternativa para la generación de rupturas de doble cadena de ADN (DSB) en un lugar específico, allanando el camino para mejorar los rasgos del organismo. La desactivación de genes se basa en los errores del mecanismo de reparación de ADN de unión final no homóloga (NHEJ) tras la producción de DSB hechos a propósito en los genes de interés, lo que da como resultado la interrupción de sus secuencias codificantes. En esta tesis de Master, hemos analizado la generación de estos DSB mediada por CRISPR-Cas12a / Cas9, así como explorar diferentes parámetros que podrían mejorar el rendimiento de Cas12a y Cas9 en N. benthamiana. Entre ellos, se evaluó la influencia de la temperatura en las eficiencia de edición, la capacidad de "multiplexing" de diferentes ortólogos de Cas o la implementación del sistema CRISPR / ErCas12a recientemente descrito. Además, estudiamos la fiabilidad de los algoritmos disponibles para predecir el rendimiento del ARN guía en N. benthamiana observando que los algoritmos disponibles para Cas12a son más precisos que los disponibles para Cas9. En contraste, la reparación de DSB mediada por HR permite su modificación dirigida al introducir una molécula de ADN donante con los cambios previstos para su reparación. Estas son la base de la modificación dirigida de genes y las estrategias de "knock-in". Sin embargo, su eficiencia reducida cuando se aplica en plantas ha limitado su utilidad. Por esta razón, esta tesis de Master también se ha centrado en un sistema para mejorar su rendimiento en N. benthamiana, evaluando el uso de replicones basados en ADN, como geminivirus, para la introducción de la secuencia de ADN utilizada en estas estrategias de edición mediadas por recombinación homóloga., [EN] Over the past years, CRISPR technology has revolutionized genome engineering in plants. The CRISPR/Cas system provides an alternative for the generation of DNA Double Strand Breaks (DSBs) at a specific target locus, paving the way for improving organism traits. Gene knockout relies on the errors of the non-homologous end joining (NHEJ) DNA repair mechanism upon the production of DSBs deliberately on the genes of interest, resulting in the disruption of their coding sequences. In this Master s thesis, we have analyzed CRISPR-Cas12a/Cas9-mediated generation of these DSBs, as well as explored different parameters that could improve Cas12a and Cas9 performance in N. benthamiana. Among them, temperature influence on the editing efficiencies, multiplexing capacity of different Cas orthologues, or the implementation of the recently described CRISPR/ErCas12a system were tested. Additionally, we studied the reliability of the available algorithms to predict guide RNAs performance in N. benthamiana observing that algorithms available for Cas12a are more accurate than those available for Cas9. In contrast, HR-mediated repair of DSBs allows their deliberate modification by introducing a donor DNA molecule with the intended changes for its repairing. These are the basis of gene targeting and gene knock-in strategies. Nevertheless, their reduced efficiency when applied in plants have limited their utility. For this reason, this Master s thesis has also focused on a system to improve their performance in N. benthamiana, evaluating the use of DNA-based replicons, such as geminiviruses, for the delivery of the DNA sequence used on these HR-mediated editing strategies.
- Published
- 2020
6. Biochemical characterization of CRISPR-associated nucleases – what determines the specificity of Cas9?
- Author
-
Charpentier, Emmanuelle, Randau, Lennart, Brouns, Stan, Bratovič, Majda, Charpentier, Emmanuelle, Randau, Lennart, Brouns, Stan, and Bratovič, Majda
- Abstract
CRISPR-Cas ist ein adaptives Immunsystem, dass Bakterien und Archaeen vor eindringenden Nukleinsäuren schützt. Es besteht aus einem sogenannten CRISPR-Array, der als genetisches Gedächtnis vorangegangene Infektionen speichert und einem cas Lokus, welcher für die Abwehr essentielle Proteine codiert. Das CRISPR-assoziierte Protein 9 (Cas9) des Typ II CRISPR-Cas Systems aus Streptococcus pyogenes ist heutzutage das Mittel der Wahl für Gentherapie und Genom-Modifikationen. Allerdings gibt es nach wie vor Probleme mit der Ungenauigkeit dieses Systems, welche für eben genannte Ansätze behoben werden müssen. Aus diesem Grund ist es besonders wichtig zu verstehen, in welcher Weise die Spezifität von Cas9 beeinflusst wird. In dieser Arbeit wurden die Voraussetzungen für eine spezifische Erkennung der Zielsequenz durch drei verschiedene Cas9 Proteine des Typs II-A und ein Cas12a Protein des Typs V-A CRISPR-Cas Systems untersucht. Wir zeigen, dass Arginin Seitenketten der sogenannten „bridge“ Helix in Cas9 von S. pyogenes eine wichtige Rolle in der Bindung und Spaltung der DNS spielen. Diese Seitenketten können in zwei Gruppen unterteilt werden, welche die Spezifität von Cas9 entweder vergrößern oder verkleinern. Die Aminosäuren R63 und R66 reduzieren die Spezifität von Cas9 indem sie den sogenannten R-loop in Anwesenheit einer Fehlpaarung stabilisieren. Wir zeigen außerdem, dass Q768 eine erhöhte Toleranz von Cas9 zu Fehlpaarungen an Position 15 der Zielsequenz vermittelt und dass das Entfernen dieser Aminosäure die Spezifität von Cas9 im Bereich der Zielsequenz, die am weitesten von der PAM entfernt ist, erhöht. Eine Kombination der Mutationen der oben genannten Arginin und Glutamin Seitenketten führt zur Erhöhung der Gesamtspezifität von Cas9. Die Ergebnisse dieser Arbeit tragen zum Verständnis bei, wie Cas9 Fehlpaarungen innerhalb der Zielsequenz detektiert und können dabei helfen weitere Strategien für eine verbesserte Spezifität von Cas9 zu entwickeln., CRISPR-Cas (CRISPR-associated) systems are adaptive immune systems that have evolved in bacteria and archaea for protection against invading nucleic acids. They consist of a CRISPR array, where the genetic memory of the infection is stored and ultimately transcribed and processed into CRISPR RNAs (crRNAs), and of an operon of cas genes that encodes the Cas proteins. This thesis is focused on class 2 CRISPR-Cas systems that employ single RNA-guided nucleases in the interference phase. Dual-RNA guided CRISPR-associated protein 9 (Cas9) of the type II CRISPR-Cas system has become the tool of choice for genome editing applications in life sciences. However, off-target cleavage by Cas9 is one major issue that needs to be addressed for applications of the CRISPR-Cas9 technology for therapeutic purposes. Therefore, understanding the features that govern Cas9 specificity is of great importance. In this thesis, seed sequence requirements of three Cas9 proteins from the class 2 type II-A and one Cas12a protein from the class 2 type V-A CRISPR-Cas system have been investigated. We analyze the influence of mismatches and show that they affect target binding and/or cleavage by S. pyogenes Cas9. Additionally, we demonstrate that the arginine residues from the bridge helix of S. pyogenes Cas9 are important for target DNA binding and cleavage. Furthermore, these residues comprise two groups that either increase or decrease Cas9 sensitivity to mismatches i.e. specificity. R63 and R66 reduce Cas9 specificity by stabilizing the R-loop in the presence of mismatches. We also show that Q768 mediates Cas9 tolerance to a mismatch at target position 15 and removal of Q768 increases Cas9 specificity in the PAM-distal part of the target. Combination of arginine mutations and Q768A increased overall the sensitivity to mismatches. The results of this thesis elucidate how Cas9 senses PAM-adjacent mismatches and provide a basis to develop strategies for Cas9 variants with enhanced specificity.
- Published
- 2020
7. Multiplex genome editing of microorganisms using CRISPR-Cas
- Author
-
Adiego-Pérez, Belén (author), Randazzo, P. (author), Daran, J.G. (author), Verwaal, René (author), Roubos, Johannes A. (author), Daran-Lapujade, P.A.S. (author), Van Der Oost, John (author), Adiego-Pérez, Belén (author), Randazzo, P. (author), Daran, J.G. (author), Verwaal, René (author), Roubos, Johannes A. (author), Daran-Lapujade, P.A.S. (author), and Van Der Oost, John (author)
- Abstract
Microbial production of chemical compounds often requires highly engineered microbial cell factories. During the last years, CRISPR-Cas nucleases have been repurposed as powerful tools for genome editing. Here, we briefly review the most frequently used CRISPR-Cas tools and describe some of their applications. We describe the progress made with respect to CRISPR-based multiplex genome editing of industrial bacteria and eukaryotic microorganisms. We also review the state of the art in terms of gene expression regulation using CRISPRi and CRISPRa. Finally, we summarize the pillars for efficient multiplexed genome editing and present our view on future developments and applications of CRISPR-Cas tools for multiplex genome editing., BT/Industrial Microbiology
- Published
- 2019
- Full Text
- View/download PDF
8. Efficient generation of adenovirus vectors carrying the Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated proteins (Cas)12a system by suppressing Cas12a expression in packaging cells
- Author
-
Tsukamoto, Tomohito, Sakai, Eiko, Nishimae, Fumitaka, 1000070370939, Sakurai, Fuminori, 1000050311387, Mizuguchi, Hiroyuki, Tsukamoto, Tomohito, Sakai, Eiko, Nishimae, Fumitaka, 1000070370939, Sakurai, Fuminori, 1000050311387, and Mizuguchi, Hiroyuki
- Abstract
Tsukamoto T., Sakai E., Nishimae F., et al. Efficient generation of adenovirus vectors carrying the Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated proteins (Cas)12a system by suppressing Cas12a expression in packaging cells. Journal of Biotechnology 304, 1 (2019); https://doi.org/10.1016/j.jbiotec.2019.08.004., Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated proteins (Cas) 9 system is a powerful tool for genome editing and still being aggressively improved. Cas12a, a recently discovered Cas9 ortholog, is expected to become complementary to Cas9 due to its unique characteristics. Previously we attempted to establish an adenovirus (Ad) vector-mediated delivery of CRISPR-Cas12a system since Ad vector is widely used for gene transfer in basic researches and medical applications. However, we found difficulties preparing of Ad vectors at an adequate titer. In this study, we have developed Ad vectors that conditionally express Cas12a either by a tetracycline-controlled promoter or a hepatocyte specific promoter to avoid putative inhibitory effects of Cas12a. These vectors successfully proliferated in packaging cells, HEK293 cells, and were recovered at high titers. We have also developed packaging cells that express shRNA for Cas12a to suppress expression of Cas12a. Using the cells, the Ad vector directing constitutive expression of Cas12a proliferated efficiently and was successfully recovered at a high titer. Overall, we improved recovery of Ad vectors carrying CRISPR-Cas12a system, thus provided them as a tool in genome editing researches.
- Published
- 2019
9. Making the cut(s): how Cas12a cleaves target and non-target DNA
- Author
-
Swarts, Daan C. and Swarts, Daan C.
- Abstract
CRISPR-Cas12a (previously named Cpf1) is a prokaryotic deoxyribonuclease that can be programmed with an RNA guide to target complementary DNA sequences. Upon binding of the target DNA, Cas12a induces a nick in each of the target DNA strands, yielding a double-stranded DNA break. In addition to inducing cis-cleavage of the targeted DNA, target DNA binding induces trans-cleavage of non-target DNA. As such, Cas12a-RNA guide complexes can provide sequence-specific immunity against invading nucleic acids such as bacteriophages and plasmids. Akin to CRISPR-Cas9, Cas12a has been repurposed as a genetic tool for programmable genome editing and transcriptional control in both prokaryotic and eukaryotic cells. In addition, its trans-cleavage activity has been applied for high-sensitivity nucleic acid detection. Despite the demonstrated value of Cas12a for these applications, the exact molecular mechanisms of both cis- and trans-cleavage of DNA were not completely understood. Recent studies have revealed mechanistic details of Cas12a-mediates DNA cleavage: base pairing of the RNA guide and the target DNA induces major conformational changes in Cas12a. These conformational changes render Cas12a in a catalytically activated state in which it acts as deoxyribonuclease. This deoxyribonuclease activity mediates cis-cleavage of the displaced target DNA strand first, and the RNA guide-bound target DNA strand second. As Cas12a remains in the catalytically activated state after cis-cleavage, it subsequently demonstrates trans-cleavage of non-target DNA. Here, I review the mechanistic details of Cas12a-mediated cis- and trans-cleavage of DNA. In addition, I discuss how bacteriophage-derived anti-CRISPR proteins can inhibit Cas12a activity.
- Published
- 2019
10. CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1
- Author
-
Naduthodi, Mihris Ibnu Saleem, Mohanraju, Prarthana, Südfeld, Christian, D'Adamo, Sarah, Barbosa, Maria J., Van Der Oost, John, Naduthodi, Mihris Ibnu Saleem, Mohanraju, Prarthana, Südfeld, Christian, D'Adamo, Sarah, Barbosa, Maria J., and Van Der Oost, John
- Abstract
Background: Microalgae are considered as a sustainable feedstock for the production of biofuels and other value-added compounds. In particular, Nannochloropsis spp. stand out from other microalgal species due to their capabilities to accumulate both triacylglycerol (TAG) and polyunsaturated fatty acids (PUFAs). However, the commercialization of microalgae-derived products is primarily hindered by the high production costs compared to less sustainable alternatives. Efficient genome editing techniques leading to effective metabolic engineering could result in strains with enhanced productivities of interesting metabolites and thereby reduce the production costs. Competent CRISPR-based genome editing techniques have been reported in several microalgal species, and only very recently in Nannochloropsis spp. (2017). All the reported CRISPR-Cas-based systems in Nannochloropsis spp. rely on plasmid-borne constitutive expression of Cas9 and a specific guide, combined with repair of double-stranded breaks (DSB) by non-homologous end joining (NHEJ) for the target gene knockout. Results: In this study, we report for the first time an alternative approach for CRISPR-Cas-mediated genome editing in Nannochloropsis sp.; the Cas ribonucleoproteins (RNP) and an editing template were directly delivered into microalgal cells via electroporation, making Cas expression dispensable and homology-directed repair (HDR) possible with high efficiency. Apart from widely used SpCas9, Cas12a variants from three different bacterium were used for this approach. We observed that FnCas12a from Francisella novicida generated HDR-based targeted mutants with highest efficiency (up to 93% mutants among transformants) while AsCas12a from Acidaminococcus sp. resulted in the lowest efficiency. We initially show that the native homologous recombination (HR) system in N. oceanica IMET1 is not efficient for easy isolation of targeted mutants by HR. Cas9/sgRNA RNP delivery greatly enhanced HR at the target sit
- Published
- 2019
11. Multiplex genome editing of microorganisms using CRISPR-Cas
- Author
-
Adiego-Pérez, Belén, Randazzo, Paola, Daran, Jean Marc, Verwaal, René, Roubos, Johannes A., Daran-Lapujade, Pascale, van der Oost, John, Adiego-Pérez, Belén, Randazzo, Paola, Daran, Jean Marc, Verwaal, René, Roubos, Johannes A., Daran-Lapujade, Pascale, and van der Oost, John
- Abstract
Microbial production of chemical compounds often requires highly engineered microbial cell factories. During the last years, CRISPR-Cas nucleases have been repurposed as powerful tools for genome editing. Here, we briefly review the most frequently used CRISPR-Cas tools and describe some of their applications. We describe the progress made with respect to CRISPR-based multiplex genome editing of industrial bacteria and eukaryotic microorganisms. We also review the state of the art in terms of gene expression regulation using CRISPRi and CRISPRa. Finally, we summarize the pillars for efficient multiplexed genome editing and present our view on future developments and applications of CRISPR-Cas tools for multiplex genome editing.
- Published
- 2019
12. Introducing gene deletions by mouse zygote electroporation of Cas12a/Cpf1
- Author
-
Dumeau, Charles Etienne, Monfort, Asun, Kissling, Lucas, Swarts, Daan C., Jinek, Martin, Wutz, Anton, Dumeau, Charles Etienne, Monfort, Asun, Kissling, Lucas, Swarts, Daan C., Jinek, Martin, and Wutz, Anton
- Abstract
CRISPR-associated (Cas) nucleases are established tools for engineering of animal genomes. These programmable RNA-guided nucleases have been introduced into zygotes using expression vectors, mRNA, or directly as ribonucleoprotein (RNP) complexes by different delivery methods. Whereas microinjection techniques are well established, more recently developed electroporation methods simplify RNP delivery but can provide less consistent efficiency. Previously, we have designed Cas12a-crRNA pairs to introduce large genomic deletions in the Ubn1, Ubn2, and Rbm12 genes in mouse embryonic stem cells (ESC). Here, we have optimized the conditions for electroporation of the same Cas12a RNP pairs into mouse zygotes. Using our protocol, large genomic deletions can be generated efficiently by electroporation of zygotes with or without an intact zona pellucida. Electroporation of as few as ten zygotes is sufficient to obtain a gene deletion in mice suggesting potential applicability of this method for species with limited availability of zygotes.
- Published
- 2019
13. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a
- Author
-
Swarts, Daan C., van der Oost, John, Jinek, Martin, Swarts, Daan C., van der Oost, John, and Jinek, Martin
- Abstract
The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both activities, we determined crystal structures of Francisella novicida Cas12a bound to guide RNA and in complex with an R-loop formed by a non-cleavable guide RNA precursor and a full-length target DNA. Corroborated by biochemical experiments, these structures reveal the mechanisms of guide RNA processing and pre-ordering of the seed sequence in the guide RNA that primes Cas12a for target DNA binding. Furthermore, the R-loop complex structure reveals the strand displacement mechanism that facilitates guide-target hybridization and suggests a mechanism for double-stranded DNA cleavage involving a single active site. Together, these insights advance our mechanistic understanding of Cas12a enzymes and may contribute to further development of genome editing technologies.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.