1. F-Factors in Hypergraphs Via Absorption
- Author
-
Lo, Allan, Markström, Klas, Lo, Allan, and Markström, Klas
- Abstract
Given integers n ≥ k > l ≥ 1 and a k-graph F with |V(F)| divisible by n, define t k l (n, F) to be the smallest integer d such that every k-graph H of order n with minimum l-degree δl(H) ≥ d contains an F-factor. A classical theorem of Hajnal and Szemerédi in (Proof of a Conjecture of P. Erd˝os, pp. 601–623, 1969) implies that t2 1 (n, Kt) = (1 − 1/t)n for integers t. For k ≥ 3, t k k−1(n, Kk k ) (the δk−1(H) threshold for perfect matchings) has been determined by Kühn and Osthus in (J Graph Theory 51(4):269–280, 2006) (asymptotically) and Rödl et al. in (J Combin Theory Ser A 116(3):613–636, 2009) (exactly) for large n. In this paper, we generalise the absorption technique of Rödl et al. in (J Combin Theory Ser A 116(3):613–636, 2009) to F-factors. We determine the asymptotic values of t k 1 (n, Kk k (m)) for k = 3, 4 and m ≥ 1. In addition, we show that for t > k = 3 and γ > 0, t3 2 (n, K3 t ) ≤ (1− 2 t2−3t+4 +γ )n provided n is large and t|n. We also bound t 3 2 (n, K3 t )from below. In particular, we deduce that t 3 2 (n, K3 4 ) = (3/4+o(1))n answering a question of Pikhurko in (Graphs Combin 24(4):391–404, 2008). In addition, we prove that t k k−1(n, Kk t ) ≤ (1 − t−1 k−1 −1 + γ )n for γ > 0, k ≥ 6 and t ≥ (3 + √ 5)k/2 provided n is large and t|n.
- Published
- 2015
- Full Text
- View/download PDF