1. Wet-prepared thin films of Cu2MnSnS4: structural study and photovoltaic performances
- Author
-
Butrichi, F, Trifiletti, V, Tseberlidis, G, Colombo, B, Schwiddessen, R, Gurieva, G, Binetti, S, Schorr, S, Colombo, B E G, Butrichi, F, Trifiletti, V, Tseberlidis, G, Colombo, B, Schwiddessen, R, Gurieva, G, Binetti, S, Schorr, S, and Colombo, B E G
- Abstract
Cu2MnSnS4 (CMTS) is a promising candidate for application in thin film for photovoltaics (PV), thanks to sustainability and low cost of its components. Nevertheless, reported efficiencies are still poor, with a current world-record of 1.13% for a solar cell with CMTS absorber layer made by sputtering and sulfurization [1]. This work reports about a simple and low-cost synthesis procedure, starting from a solution containing all the precursors, without the need of hazardous external sulfurizing agents. CMTS thin films were made by blade coating of the solution on molybdenum substrate and followed by an annealing at 550°C under argon atmosphere, without the aid of external sulphurating agents. After annealing, samples were quenched at RT, but some selected samples underwent a slow cooling inside the furnace. Some selected CMTS thin films were subjected to HCl etching (3% HCl, at 75°C for 10 minutes). Prototype devices were made with the architecture Mo/CMTS/CdS/i-ZnO/AZO/Al grid: CdS was deposited by chemical bath deposition, i-ZnO and AZO by sputtering and Al grid was thermally evaporated. Some selected devices were subjected to a thermal treatment at 260°C for 10 minutes on titanium hotplate. After measurements of photovoltaic performances, upper layers were removed and CMTS thin films were extensively studied employing the GI-XRD technique to determine the lattice constants as well as microstructural properties like microstrain and size of coherent scattering domains. These results of the evaluation of GI-XRD data and photovoltaic performances were correlated to precursor composition, cooling conditions after annealing and post deposition treatments (i.e. HCl etching of the absorber before CdS deposition and thermal treatment of the complete device). All CMTS thin films analyzed by GI-XRD exhibited stannite structure, as expected [2], with a very good crystalline quality. The impact of metal ratio in the solution of precursors was studied, keeping copper poor condi
- Published
- 2024