1. Next-Generation Sequencing–Based Clonality Assessment of Ig Gene Rearrangements
- Author
-
EuroClonality-NGS Working Group, Michiel van den Brand, Jos Rijntjes, Markus Möbs, Julia Steinhilber, M.Y. (Michele) van der Klift, K.C. (Kim) Heezen, Leonie I. Kroeze, Tomas Reigl, Jakub Porc, Nikos Darzentas, Jeroen A.C.W. Luijks, Blanca Scheijen, Frédéric Davi, Hesham ElDaly, Hongxiang Liu, Ioannis Anagnostopoulos, Michael Hummel, Falko Fend, A.W. (Ton) Langerak, Patricia J.T.A. Groenen, EuroClonality-NGS Working Group, Michiel van den Brand, Jos Rijntjes, Markus Möbs, Julia Steinhilber, M.Y. (Michele) van der Klift, K.C. (Kim) Heezen, Leonie I. Kroeze, Tomas Reigl, Jakub Porc, Nikos Darzentas, Jeroen A.C.W. Luijks, Blanca Scheijen, Frédéric Davi, Hesham ElDaly, Hongxiang Liu, Ioannis Anagnostopoulos, Michael Hummel, Falko Fend, A.W. (Ton) Langerak, and Patricia J.T.A. Groenen
- Abstract
Ig gene (IG) clonality analysis has an important role in the distinction of benign and malignant B-cell lymphoid proliferations and is mostly performed with the conventional EuroClonality/BIOMED-2 multiplex PCR protocol and GeneScan fragment size analysis. Recently, the EuroClonality-NGS Working Group developed a method for next-generation sequencing (NGS)–based IG clonality analysis. Herein, we report the results of an international multicenter biological validation of this novel method compared with the gold standard EuroClonality/BIOMED-2 protocol, based on 209 specimens of reactive and neoplastic lymphoproliferations. NGS-based IG clonality analysis showed a high interlaboratory concordance (99%) and high concordance with conventional clonality analysis (98%) for the molecular conclusion. Detailed analysis of the individual IG heavy chain and kappa light chain targets showed that NGS-based clonality analysis was more often able to detect a clonal rearrangement or yield an interpretable result. NGS-based and conventional clonality analysis detected a clone in 96% and 95% of B-cell neoplasms, respectively, and all but one of the reactive cases were scored polyclonal. We conclude that NGS-based IG clonality analysis performs comparable to conventional clonality analysis. We provide critical parameters for interpretation and discuss a first step toward a quantitative scoring approach for NGS clonality results. Considering the advantages of NGS-based clonality analysis, including its high sensitivity and possibilities for accurate clonal comparison, this supports implementation in diagnostic practice.
- Published
- 2021
- Full Text
- View/download PDF