1. Advanced Baseline for 3D Human Pose Estimation: A Two-Stage Approach
- Author
-
Gui, Zichen, Luo, Jungang, Gui, Zichen, and Luo, Jungang
- Abstract
Human pose estimation has been widely applied in various industries. While recent decades have witnessed the introduction of many advanced two-dimensional (2D) human pose estimation solutions, three-dimensional (3D) human pose estimation is still an active research field in computer vision. Generally speaking, 3D human pose estimation methods can be divided into two categories: single-stage and two-stage. In this paper, we focused on the 2D-to-3D lifting process in the two-stage methods and proposed a more advanced baseline model for 3D human pose estimation, based on the existing solutions. Our improvements include optimization of machine learning models and multiple parameters, as well as introduction of a weighted loss to the training model. Finally, we used the Human3.6M benchmark to test the final performance and it did produce satisfactory results.
- Published
- 2022