1. Out-of-field generic ML training with in-field specific adaptation to facilitate ML deployments
- Author
-
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques, Shariati, Mohammad Behnam, Ruiz Ramírez, Marc, Velasco Esteban, Luis Domingo, Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya. GCO - Grup de Comunicacions Òptiques, Shariati, Mohammad Behnam, Ruiz Ramírez, Marc, and Velasco Esteban, Luis Domingo
- Abstract
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works., A two-phase strategy to facilitate ML algorithm deployment in real networks is demonstrated: out-of-field training uses data from simulation and testbed experiments with generic equipment whereas in-field adaptation is applied to support heterogeneous equipment., Peer Reviewed, Postprint (author's final draft)
- Published
- 2019