1. Impact of asymmetries on fuel performance in inertial confinement fusion
- Author
-
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology. Plasma Science and Fusion Center, Gatu Johnson, Maria, Frenje, Johan A, Lahmann, Brandon James, Seguin, Fredrick Hampton, Petrasso, Richard D, Appelbe, B. D., Chittenden, J. P., Delettrez, J., Forrest, C., Glebov, V. Yu., Grimble, W., Haines, B. M., Igumenshchev, I., Janezic, R., Knauer, J. P., Marshall, F. J., Michel, T., Stoeckl, C., Walsh, C., Zylstra, A. B., Massachusetts Institute of Technology. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology. Plasma Science and Fusion Center, Gatu Johnson, Maria, Frenje, Johan A, Lahmann, Brandon James, Seguin, Fredrick Hampton, Petrasso, Richard D, Appelbe, B. D., Chittenden, J. P., Delettrez, J., Forrest, C., Glebov, V. Yu., Grimble, W., Haines, B. M., Igumenshchev, I., Janezic, R., Knauer, J. P., Marshall, F. J., Michel, T., Stoeckl, C., Walsh, C., and Zylstra, A. B.
- Abstract
Low-mode asymmetries prevent effective compression, confinement, and heating of the fuel in inertial confinement fusion (ICF) implosions, and their control is essential to achieving ignition. Ion temperatures (T[subscript ion]) in ICF experiments are inferred from the broadening of primary neutron spectra. Directional motion (flow) of the fuel at burn also impacts broadening and will lead to artificially inflated “T[subscript ion]” values. Flow due to low-mode asymmetries is expected to give rise to line-of-sight variations in measured T[subscript ion]. We report on intentionally asymmetrically driven experiments at the OMEGA laser facility designed to test the ability to accurately predict and measure line-of-sight differences in apparent T[subscript ion] due to low-mode asymmetry-seeded flows. Contrasted to chimera and xrage simulations, the measurements demonstrate how all asymmetry seeds have to be considered to fully capture the flow field in an implosion. In particular, flow induced by the stalk that holds the target is found to interfere with the seeded asymmetry. A substantial stalk-seeded asymmetry in the areal density of the implosion is also observed., United States. Department of Energy (Award DE-NA0002949)
- Published
- 2018