11 results on '"Robertson DE"'
Search Results
2. Ensemble flood forecasting: Current status and future opportunities
- Author
-
Wu, W, Emerton, R, Duan, Q, Wood, AW, Wetterhall, F, Robertson, DE, Wu, W, Emerton, R, Duan, Q, Wood, AW, Wetterhall, F, and Robertson, DE
- Abstract
Ensemble flood forecasting has gained significant momentum over the past decade due to the growth of ensemble numerical weather and climate prediction, expansion in high performance computing, growing interest in shifting from deterministic to risk‐based decision‐making that accounts for forecast uncertainty, and the efforts of communities such as the international Hydrologic Ensemble Prediction Experiment (HEPEX), which focuses on advancing relevant ensemble forecasting capabilities and fostering its adoption. With this shift, comes the need to understand the current state of ensemble flood forecasting, in order to provide insights into current capabilities and areas for improvement, thus identifying future research opportunities to allow for better allocation of research resources. In this article, we provide an overview of current research activities in ensemble flood forecasting and discuss knowledge gaps and future research opportunities, based on a review of 70 papers focusing on various aspects of ensemble flood forecasting around the globe. Future research directions include opportunities to improve technical aspects of ensemble flood forecasting, such as data assimilation techniques and methods to account for more sources of uncertainty, and developing ensemble forecasts for more variables, for example, flood inundation, by applying techniques such as machine learning. Further to this, we conclude that there is a need to not only improve technical aspects of flood forecasting, but also to bridge the gap between scientific research and hydrometeorological model development, and real‐world flood management using probabilistic ensemble forecasts, especially through effective communication.
- Published
- 2020
3. A Data Censoring Approach for Predictive Error Modeling of Flow in Ephemeral Rivers
- Author
-
Wang, QJ, Bennett, JC, Robertson, DE, Li, M, Wang, QJ, Bennett, JC, Robertson, DE, and Li, M
- Published
- 2020
4. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments
- Author
-
Schepen, A, Zhao, T, Wang, QJ, Robertson, DE, Schepen, A, Zhao, T, Wang, QJ, and Robertson, DE
- Abstract
Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S), which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.
- Published
- 2018
5. Seasonal streamflow forecasting in the upper Indus Basin of Pakistan: an assessment of methods
- Author
-
Charles, SP, Wang, QJ, Ahmad, M-U-D, Hashmi, D, Schepen, A, Podger, G, Robertson, DE, Charles, SP, Wang, QJ, Ahmad, M-U-D, Hashmi, D, Schepen, A, Podger, G, and Robertson, DE
- Abstract
Timely and skilful seasonal streamflow forecasts are used by water managers in many regions of the world for seasonal water allocation outlooks for irrigators, reservoir operations, environmental flow management, water markets and drought response strategies. In Australia, the Bayesian joint probability (BJP) statistical approach has been deployed by the Australian Bureau of Meteorology to provide seasonal streamflow forecasts across the country since 2010. Here we assess the BJP approach, using antecedent conditions and climate indices as predictors, to produce Kharif season (April–September) streamflow forecasts for inflow to Pakistan's two largest upper Indus Basin (UIB) water supply dams, Tarbela (on the Indus) and Mangla (on the Jhelum). For Mangla, we compare these BJP forecasts to (i) ensemble streamflow predictions (ESPs) from the snowmelt runoff model (SRM) and (ii) a hybrid approach using the BJP with SRM–ESP forecast means as an additional predictor. For Tarbela, we only assess BJP forecasts using antecedent and climate predictors as we did not have access to SRM for this location. Cross validation of the streamflow forecasts shows that the BJP approach using two predictors (March flow and an El Niño Southern Oscillation, ENSO, climate index) provides skilful probabilistic forecasts that are reliable in uncertainty spread for both Mangla and Tarbela. For Mangla, the SRM approach leads to forecasts that exhibit some bias and are unreliable in uncertainty spread, and the hybrid approach does not result in better forecast skill. Skill levels for Kharif (April–September), early Kharif (April–June) and late Kharif (July–September) BJP forecasts vary between the two locations. Forecasts for Mangla show high skill for early Kharif and moderate skill for all Kharif and late Kharif, whereas forecasts for Tarbela also show moderate skill for all Kharif and late Kharif, but low skill for early Kharif. The BJP approach is simple to apply, with small input d
- Published
- 2018
6. How Suitable is Quantile Mapping For Postprocessing GCM Precipitation Forecasts?
- Author
-
Zhao, T, Bennett, JC, Wang, QJ, Schepen, A, Wood, AW, Robertson, DE, Ramos, M-H, Zhao, T, Bennett, JC, Wang, QJ, Schepen, A, Wood, AW, Robertson, DE, and Ramos, M-H
- Abstract
GCMs are used by many national weather services to produce seasonal outlooks of atmospheric and oceanic conditions and fluxes. Postprocessing is often a necessary step before GCM forecasts can be applied in practice. Quantile mapping (QM) is rapidly becoming the method of choice by operational agencies to postprocess raw GCM outputs. The authors investigate whether QM is appropriate for this task. Ensemble forecast postprocessing methods should aim to 1) correct bias, 2) ensure forecasts are reliable in ensemble spread, and 3) guarantee forecasts are at least as skillful as climatology, a property called “coherence.” This study evaluates the effectiveness of QM in achieving these aims by applying it to precipitation forecasts from the POAMA model. It is shown that while QM is highly effective in correcting bias, it cannot ensure reliability in forecast ensemble spread or guarantee coherence. This is because QM ignores the correlation between raw ensemble forecasts and observations. When raw forecasts are not significantly positively correlated with observations, QM tends to produce negatively skillful forecasts. Even when there is significant positive correlation, QM cannot ensure reliability and coherence for postprocessed forecasts. Therefore, QM is not a fully satisfactory method for postprocessing forecasts where the issues of bias, reliability, and coherence pre-exist. Alternative postprocessing methods based on ensemble model output statistics (EMOS) are available that achieve not only unbiased but also reliable and coherent forecasts. This is shown with one such alternative, the Bayesian joint probability modeling approach.
- Published
- 2017
7. Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model
- Author
-
Bennett, JC, Wang, QJ, Li, M, Robertson, DE, Schepen, A, Bennett, JC, Wang, QJ, Li, M, Robertson, DE, and Schepen, A
- Published
- 2016
8. Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting
- Author
-
Li, M, Wang, QJ, Bennett, JC, Robertson, DE, Li, M, Wang, QJ, Bennett, JC, and Robertson, DE
- Abstract
This study develops a new error modelling method for ensemble short-term and real-time streamflow forecasting, called error reduction and representation in stages (ERRIS). The novelty of ERRIS is that it does not rely on a single complex error model but runs a sequence of simple error models through four stages. At each stage, an error model attempts to incrementally improve over the previous stage. Stage 1 establishes parameters of a hydrological model and parameters of a transformation function for data normalization, Stage 2 applies a bias correction, Stage 3 applies autoregressive (AR) updating, and Stage 4 applies a Gaussian mixture distribution to represent model residuals. In a case study, we apply ERRIS for one-step-ahead forecasting at a range of catchments. The forecasts at the end of Stage 4 are shown to be much more accurate than at Stage 1 and to be highly reliable in representing forecast uncertainty. Specifically, the forecasts become more accurate by applying the AR updating at Stage 3, and more reliable in uncertainty spread by using a mixture of two Gaussian distributions to represent the residuals at Stage 4. ERRIS can be applied to any existing calibrated hydrological models, including those calibrated to deterministic (e.g. least-squares) objectives.
- Published
- 2016
9. Ensemble forecasting of short-term system scale irrigation demands using real-time flow data and numerical weather predictions
- Author
-
Perera, KC, Western, AW, Robertson, DE, George, B, Nawarathna, B, Perera, KC, Western, AW, Robertson, DE, George, B, and Nawarathna, B
- Abstract
Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real‐time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short‐term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash–Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.
- Published
- 2016
10. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes
- Author
-
Alvarez-Garreton, C, Ryu, D, Western, AW, Su, C-H, Crow, WT, Robertson, DE, Leahy, C, Alvarez-Garreton, C, Ryu, D, Western, AW, Su, C-H, Crow, WT, Robertson, DE, and Leahy, C
- Abstract
Assimilation of remotely sensed soil moisture data (SM-DA) to correct soil water stores of rainfall-runoff models has shown skill in improving streamflow prediction. In the case of large and sparsely monitored catchments, SM-DA is a particularly attractive tool. Within this context, we assimilate satellite soil moisture (SM) retrievals from the Advanced Microwave Scanning Radiometer (AMSR-E), the Advanced Scatterometer (ASCAT) and the Soil Moisture and Ocean Salinity (SMOS) instrument, using an Ensemble Kalman filter to improve operational flood prediction within a large (> 40 000 km2) semi-arid catchment in Australia. We assess the importance of accounting for channel routing and the spatial distribution of forcing data by applying SM-DA to a lumped and a semi-distributed scheme of the probability distributed model (PDM). Our scheme also accounts for model error representation by explicitly correcting bias in soil moisture and streamflow in the ensemble generation process, and for seasonal biases and errors in the satellite data. Before assimilation, the semi-distributed model provided a more accurate streamflow prediction (Nash–Sutcliffe efficiency, NSE = 0.77) than the lumped model (NSE = 0.67) at the catchment outlet. However, this did not ensure good performance at the "ungauged" inner catchments (two of them with NSE below 0.3). After SM-DA, the streamflow ensemble prediction at the outlet was improved in both the lumped and the semi-distributed schemes: the root mean square error of the ensemble was reduced by 22 and 24%, respectively; the false alarm ratio was reduced by 9% in both cases; the peak volume error was reduced by 58 and 1%, respectively; the ensemble skill was improved (evidenced by 12 and 13% reductions in the continuous ranked probability scores, respectively); and the ensemble reliability was increased in both cases (expressed by flatter rank histograms). SM-DA did not improve NSE. Our findings imply that even when rainfall is the
- Published
- 2015
11. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes
- Author
-
Alvarez-Garreton, C, Ryu, D, Western, AW, Su, C-H, Crow, WT, Robertson, DE, Leahy, C, Alvarez-Garreton, C, Ryu, D, Western, AW, Su, C-H, Crow, WT, Robertson, DE, and Leahy, C
- Abstract
Assimilation of remotely sensed soil moisture data (SM–DA) to correct soil water stores of rainfall-runoff models has shown skill in improving streamflow prediction. In the case of large and sparsely monitored catchments, SM–DA is a particularly attractive tool. Within this context, we assimilate active and passive satellite soil moisture (SSM) retrievals using an ensemble Kalman filter to improve operational flood prediction within a large semi-arid catchment in Australia (>40 000 km2). We assess the importance of accounting for channel routing and the spatial distribution of forcing data by applying SM–DA to a lumped and a semi-distributed scheme of the probability distributed model (PDM). Our scheme also accounts for model error representation and seasonal biases and errors in the satellite data. Before assimilation, the semi-distributed model provided more accurate streamflow prediction (Nash–Sutcliffe efficiency, NS = 0.77) than the lumped model (NS = 0.67) at the catchment outlet. However, this did not ensure good performance at the "ungauged" inner catchments. After SM–DA, the streamflow ensemble prediction at the outlet was improved in both the lumped and the semi-distributed schemes: the root mean square error of the ensemble was reduced by 27 and 31%, respectively; the NS of the ensemble mean increased by 7 and 38%, respectively; the false alarm ratio was reduced by 15 and 25%, respectively; and the ensemble prediction spread was reduced while its reliability was maintained. Our findings imply that even when rainfall is the main driver of flooding in semi-arid catchments, adequately processed SSM can be used to reduce errors in the model soil moisture, which in turn provides better streamflow ensemble prediction. We demonstrate that SM–DA efficacy is enhanced when the spatial distribution in forcing data and routing processes are accounted for. At ungauged locations, SM–DA is effective at improving streamflow ensemble prediction, however, the
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.