1. The PRISMA imaging spectroscopy mission: overview and first performance analysis
- Author
-
Cogliati, S, Sarti, F, Chiarantini, L, Cosi, M, Lorusso, R, Lopinto, E, Miglietta, F, Genesio, L, Guanter, L, Damm, A, Pérez-López, S, Scheffler, D, Tagliabue, G, Panigada, C, Rascher, U, Dowling, T, Giardino, C, Colombo, R, Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., Miglietta, F., Genesio, L., Guanter, L., Damm, A., Pérez-López, S., Scheffler, D., Tagliabue, G., Panigada, C., Rascher, U., Dowling, T. P. F., Giardino, C., Colombo, R., Cogliati, S, Sarti, F, Chiarantini, L, Cosi, M, Lorusso, R, Lopinto, E, Miglietta, F, Genesio, L, Guanter, L, Damm, A, Pérez-López, S, Scheffler, D, Tagliabue, G, Panigada, C, Rascher, U, Dowling, T, Giardino, C, Colombo, R, Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., Miglietta, F., Genesio, L., Guanter, L., Damm, A., Pérez-López, S., Scheffler, D., Tagliabue, G., Panigada, C., Rascher, U., Dowling, T. P. F., Giardino, C., and Colombo, R.
- Abstract
The PRISMA satellite mission launched on March 22nd, 2019 is one of the latest spaceborne imaging spectroscopy mission for Earth Observation. The PRISMA satellite comprises a high-spectral resolution VNIR-SWIR imaging spectrometer and a panchromatic camera. In summer 2019, first operations during the commissioning phase were mainly devoted to acquisitions in specific areas for evaluating instrument functioning, in-flight performance, and mission data product accuracy. A field and airborne campaign was carried out over an agriculture area in Italy to collect in-situ multi-source spectroscopy measurements at different scales simultaneously with PRISMA. The spectral, radiometric and spatial performance of PRISMA Level 1 Top-Of-Atmosphere radiance (LTOA) product were analyzed. The in-situ surface reflectance measurements over different landcovers were propagated to LTOA using MODTRAN5 radiative transfer simulations and compared with satellite observations. Overall, this work offers a first quantitative evaluation about the PRISMA mission performance and imaging spectroscopy LTOA data product consistency. Our results show that the spectral smile is less than 5 nm, the average spectral resolution is 13 nm and 11 nm (VNIR and SWIR respectively) and it varies ±2 nm across track. The radiometric comparison between PRISMA and field/airborne spectroscopy shows a difference lower than 5% for NIR and SWIR, whereas it is included in the 2–7% range in the VIS. The estimated instrument signal to noise ratio (SNR) is ≈400–500 in the NIR and part of the SWIR (<1300 nm), lower SNR values were found at shorter (<700 nm) and longer wavelengths (>1600 nm). The VNIR-to-SWIR spatial co-registration error is below 8 m and the spatial resolution is 37.11 m and 38.38 m for VNIR and SWIR respectively. The results are in-line with the expectations and mission requirements and indicate that acquired images are suitable for further scientific applications. However, this first assessment
- Published
- 2021