1. Synthesising prosody with insufficient context
- Author
-
Hodari, Zack, King, Simon, Watts, Oliver, and Bell, Peter
- Subjects
text-to-speech synthesis ,TTS ,expressivity ,prosody ,situational information ,natural language - Abstract
Prosody is a key component in human spoken communication, signalling emotion, attitude, information structure, intention, and other communicative functions through perceived variation in intonation, loudness, timing, and voice quality. However, the prosody in text-to-speech (TTS) systems is often monotonous and adds no additional meaning to the text. Synthesising prosody is difficult for several reasons: I focus on three challenges. First, prosody is embedded in the speech signal, making it hard to model with machine learning. Second, there is no clear orthography for prosody, meaning it is underspecified in the input text and making it difficult to directly control. Third, and most importantly, prosody is determined by the context of a speech act, which TTS systems do not, and will never, have complete access to. Without the context, we cannot say if prosody is appropriate or inappropriate. Context is wide ranging, but state-of-the-art TTS acoustic models only have access to phonetic information and limited structural information. Unfortunately, most context is either difficult, expensive, or impos- sible to collect. Thus, fully specified prosodic context will never exist. Given there is insufficient context, prosody synthesis is a one-to-many generative task: it necessitates the ability to produce multiple renditions. To provide this ability, I propose methods for prosody control in TTS, using either explicit prosody features, such as F0 and duration, or learnt prosody representations disentangled from the acoustics. I demonstrate that without control of the prosodic variability in speech, TTS will produce average prosody-i.e. flat and monotonous prosody. This thesis explores different options for operating these control mechanisms. Random sampling of a learnt distribution of prosody produces more varied and realistic prosody. Alternatively, a human-in-the-loop can operate the control mechanism-using their intuition to choose appropriate prosody. To improve the effectiveness of human-driven control, I design two novel approaches to make control mechanisms more human interpretable. Finally, it is important to take advantage of additional context as it becomes available. I present a novel framework that can incorporate arbitrary additional context, and demonstrate my state-of- the-art context-aware model of prosody using a pre-trained and fine-tuned language model. This thesis demonstrates empirically that appropriate prosody can be synthesised with insufficient context by accounting for unexplained prosodic variation.
- Published
- 2022
- Full Text
- View/download PDF