1. Measuring and modelling human response to foot-transmitted vibration exposure
- Author
-
Goggins, Katie Anne and Goggins, Katie Anne
- Abstract
Foot-transmitted vibration (FTV) occurs when a worker is exposed to vibration through the feet and can occur when operating vibrating equipment such as bolters, jumbo drills, or crushers, or standing to operate mobile equipment such as locomotives and forklifts. Exposure to FTV has been linked to the development of vibration-induced white feet, a vascular disorder with reduced circulation to the toes causing blanching. Vibration research has been focused on whole-body vibration (WBV) and hand-arm vibration, with FTV being lumped in to standing WBV. This research includes, but is not limited to, resonant frequency identification, development of international standards governing safe exposure limits, personal protective equipment design, and model development. It is the intention of this research to initiate research specifically for FTV. The first step to preventing harmful exposure is to identify the resonant frequencies at different anatomical locations on the foot (Objective 1). The resonance of 24 anatomical locations on the foot was identified for 21 participants, where the most notable differences in the average peak frequency occurred between the toes (range: 99-147Hz), midfoot (range: 51-84Hz), and ankle (range: 16-39Hz). As workers do not normally stand in a completely natural position, it was equally important to measure how altering the location of the centre of pressure (COP) changes resonance and the transmissibility of vibration through the foot (Objective 2). The resonance at the same 24 anatomical locations was identified when the COP was pushed forward (towards toes) and backward (towards heels). Generally, resonance at the measurement location increased when the COP was concentrated to a particular portion of the foot. The third objective of this research was to reduce the measurements at 24 anatomical locations, from the first two objectives, down to a representative subset (Objective 3). Multiple correspondence analysis was conducted on the peak t
- Published
- 2019