1. Towards a better characterization of submicron aerosol in the Mediterranean basin
- Author
-
Minguillón, María Cruz, Alastuey, Andrés, Via González, Marta, Minguillón, María Cruz, Alastuey, Andrés, and Via González, Marta
- Abstract
Atmospheric aerosol is an ensemble of atmospheric pollutants with a severe impact on human health and Earth climate. Particulate Matter (PM) effects vary depending on the composition and size. However, current air quality guidelines (AQG) from WHO and from the EU Commission only define threshold standards for bulk PM10 and PM2.5 concentrations. In terms of health, the smaller the particles, the deeper they penetrate into the respiratory system, and they can even diffuse into the bloodstream and circulate to other parts of the organism. The adverse effects on the tissues in which they are deposited depend on the PM composition. Regarding climate, PM size and composition relevantly affect many aerosol-radiation direct and indirect interactions, which regulate troposphere temperature. Consequently, the consideration of these properties is relevant for present and future climate descriptions. Barcelona, the city where this study focuses, is located in the Mediterranean basin, a region with high complexity in terms of air pollution, hence, the nature of this enclave requires thorough monitoring of PM in order to protect the population from exposition accurately. This dissertation focuses on submicronic aerosol evolution over the last decade, with a more detailed study for May 2014-May 2015 and September 2017-October 2018. The objective of this thesis is to describe the PM1 sources in Barcelona by means of source apportionment (SA) techniques. The Positive Matrix Factorisation (PMF) algorithm is one of the most widely used approaches for SA and is the tool used in this dissertation. A secondary aim of this study is the improvement of the SA methodology itself. This is accomplished by testing the outcomes of new methodologies involving the more automatic analysis and dataset junction with several approaches. A field-deployed aerosol mass spectrometer was used at the Barcelona site for continuous PM1 measurements, and SA was performed on Organic Aerosol (OA). First, SA was tack
- Published
- 2023