5 results on '"crop yield enhancement"'
Search Results
2. Protists as main indicators and determinants of plant performance
- Author
-
Guo, Sai, Xiong, Wu, Hang, Xinnan, Gao, Zhilei, Jiao, Zixuan, Liu, Hongjun, Mo, Yani, Zhang, Nan, Kowalchuk, George A., Li, Rong, Shen, Qirong, Geisen, Stefan, Guo, Sai, Xiong, Wu, Hang, Xinnan, Gao, Zhilei, Jiao, Zixuan, Liu, Hongjun, Mo, Yani, Zhang, Nan, Kowalchuk, George A., Li, Rong, Shen, Qirong, and Geisen, Stefan
- Abstract
BACKGROUND: Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes.RESULTS: Yields were higher in the (bio-)organic fertilization treatments. Soil abiotic conditions were altered by the fertilization regime, with the prominent effects coming from the (bio-)organic fertilization treatments. Those treatments also led to the pronounced shifts in protistan communities, especially microbivorous cercozoan protists. We found positive correlations of these protists with plant yield and the density of potentially plant-beneficial microorganisms. We further explored the mechanistic ramifications of these relationships via greenhouse experiments, showing that cercozoan protists can positively impact plant growth, potentially via interactions with plant-beneficial microorganisms including Trichoderma, the biological agent delivered by the bio-fertilizer.CONCLUSIONS: We show that protists may play central roles in stimulating plant performance through microbiome interactions. Future agricultural practices might aim to specifically enhance plant beneficial protists or apply those protists as novel, sustainable biofertilizers. Video abstract.
- Published
- 2021
3. Protists as main indicators and determinants of plant performance
- Author
-
Guo, Sai, Xiong, Wu, Hang, Xinnan, Gao, Zhilei, Jiao, Zixuan, Liu, Hongjun, Mo, Yani, Zhang, Nan, Kowalchuk, George A., Li, Rong, Shen, Qirong, Geisen, Stefan, Guo, Sai, Xiong, Wu, Hang, Xinnan, Gao, Zhilei, Jiao, Zixuan, Liu, Hongjun, Mo, Yani, Zhang, Nan, Kowalchuk, George A., Li, Rong, Shen, Qirong, and Geisen, Stefan
- Abstract
Background: Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes. Results: Yields were higher in the (bio-)organic fertilization treatments. Soil abiotic conditions were altered by the fertilization regime, with the prominent effects coming from the (bio-)organic fertilization treatments. Those treatments also led to the pronounced shifts in protistan communities, especially microbivorous cercozoan protists. We found positive correlations of these protists with plant yield and the density of potentially plant-beneficial microorganisms. We further explored the mechanistic ramifications of these relationships via greenhouse experiments, showing that cercozoan protists can positively impact plant growth, potentially via interactions with plant-beneficial microorganisms including Trichoderma, the biological agent delivered by the bio-fertilizer. Conclusions: We show that protists may play central roles in stimulating plant performance through microbiome interactions. Future agricultural practices might aim to specifically enhance plant beneficial protists or apply those protists as novel, sustainable biofertilizers. [MediaObject not available: see fulltext.].
- Published
- 2021
4. Protists as main indicators and determinants of plant performance
- Author
-
Guo, Sai, Xiong, Wu, Hang, Xinnan, Gao, Zhilei, Jiao, Zixuan, Liu, Hongjun, Mo, Yani, Zhang, Nan, Kowalchuk, George A., Li, Rong, Shen, Qirong, Geisen, Stefan, Guo, Sai, Xiong, Wu, Hang, Xinnan, Gao, Zhilei, Jiao, Zixuan, Liu, Hongjun, Mo, Yani, Zhang, Nan, Kowalchuk, George A., Li, Rong, Shen, Qirong, and Geisen, Stefan
- Abstract
Background: Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes. Results: Yields were higher in the (bio-)organic fertilization treatments. Soil abiotic conditions were altered by the fertilization regime, with the prominent effects coming from the (bio-)organic fertilization treatments. Those treatments also led to the pronounced shifts in protistan communities, especially microbivorous cercozoan protists. We found positive correlations of these protists with plant yield and the density of potentially plant-beneficial microorganisms. We further explored the mechanistic ramifications of these relationships via greenhouse experiments, showing that cercozoan protists can positively impact plant growth, potentially via interactions with plant-beneficial microorganisms including Trichoderma, the biological agent delivered by the bio-fertilizer. Conclusions: We show that protists may play central roles in stimulating plant performance through microbiome interactions. Future agricultural practices might aim to specifically enhance plant beneficial protists or apply those protists as novel, sustainable biofertilizers. [MediaObject not available: see fulltext.].
- Published
- 2021
5. Protists as main indicators and determinants of plant performance
- Author
-
Guo, Sai, Hang, Xinnan, Xiong, Wu, Gao, Zhilei, Jiao, Zixuan, Liu, Hongjun, Mo, Yani, Zhang, Nan, Kowalchuk, George A., Li, Rong, Shen, Qirong, Geisen, S.A., Guo, Sai, Hang, Xinnan, Xiong, Wu, Gao, Zhilei, Jiao, Zixuan, Liu, Hongjun, Mo, Yani, Zhang, Nan, Kowalchuk, George A., Li, Rong, Shen, Qirong, and Geisen, S.A.
- Abstract
Microbiomes play vital roles in plant health and performance, and the development of plant beneficial microbiomes can be steered by organic fertilizer inputs. Especially well-studied are fertilizer-induced changes on bacteria and fungi and how changes in these groups alter plant performance. However, impacts on protist communities, including their trophic interactions within the microbiome and consequences on plant performance remain largely unknown. Here, we tracked the entire microbiome, including bacteria, fungi, and protists, over six growing seasons of cucumber under different fertilization regimes (conventional, organic, and Trichoderma bio-organic fertilization) and linked microbial data to plant yield to identify plant growth-promoting microbes.
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.