1. A lead astronomical neutrino detector: LAND
- Author
-
Hargrove, C.K., Batkin, I., Sundaresan, M.K., and Dubeau, J.
- Abstract
The development of a sensitive detector for neutrinos of astronomical origin (simply called astronomical neutrinos hereafter) would make possible detailed investigation of supernovae (SN) and open the way for the discovery of new astronomical phenomena. The neutrino weak interaction cross section at energies less than 100 MeV increases with Zdue to correlated nucleon effects and the nuclear Coulomb factor (Fermi function). Therefore neutrino detection based on high Z materials will give the largest possible cross sections and best possible neutrino detection efficiency. This physics argument motivated us to study lead as a detector of SN. The neutrino cross section for neutron production on lead through the reaction Pb(νe,μ,τ, ln)Xis ≈ 10−40cm2, for energies up to 50 MeV, where Xrefers to Pb, Bi or Tl, the product nuclei of the reactions, lrefers to the scattered lepton, and nrefers to neutrons. Neutron production will occur for all types of neutrinos and the neutrons can be detected easily and efficiently. The detector is uniquely sensitive to all neutrinos but #x003BD;e. We show that a SN at the centre of the galaxy produces about 1000 neutrons in a 1 kiloton detector. This large number will make it possible to measure the mass of νμand ντneutrinos between 10 and 100 eV with a precision of 10 eV. Further, we describe a possible detector in which one also detects the associated electromagnetic energy in coincidence with the neutrons. The coincidence makes this detector essentially background free. It is possible to expand such a detector to a size which will reach SN well beyond our galaxy. We calculate the ν-Pb cross section, discuss the design, neutrino mass resolution, neutron detection efficiency and signal to noise ratio aspects of these detectors.
- Published
- 1996
- Full Text
- View/download PDF