1. Synthesis and Microstructural Properties of Fe-TiO2Nanocrystalline Particles Obtained by a Modified Sol-Gel Method
- Author
-
Šijaković-Vujičić, N., Gotić, M., Musić, S., Ivanda, M., and Popović, S.
- Abstract
A series of iron/titanium oxide nanocrystalline particles with Fe/Ti molar ratios up to 0.15 were synthesized by a modified sol-gel technique using Ti(IV)-isopropoxide and anhydrous Fe(II)-acetate. The precursors were mixed and subsequently hydrolyzed with water molecules generated in situby an esterification reaction between acetic acid and ethanol. As-synthesized samples were amorphous for XRD, independently of the relative amount of doped iron. The undoped samples and samples with the molar ratio Fe/Ti = 0.01, treated at up to 500°C, contained anatase as the dominant phase and rutile as the minor phase. The samples with the Fe/Ti molar ratio of 0.15, treated at the same temperature, contained anatase (major phase), rutile (minor phase) and a very small amount of an unidentified phase. The crystallite size of the dominant phase in the samples was estimated from the XRD line broadening using the Scherrer formula. Thermogravimetric analysis showed that weight loss was accelerated and completed at lower temperatures as the relative concentration of iron in the Fe-TiO2samples increased. The strong exothermic peak in the DTA curve between 300 and 450°C in the undoped TiO2sample shifted to the lower temperatures and became much more asymmetrical with increased iron doping. This DTA peak corresponded to the amorphous-to-anatase-transition and it included several steps such as (i) the thermal degradation of strongly bound organic molecules, (ii) the condensation of unhydrolyzed –OR groups, (iii) the sintering and growth of particles and (iv) the rearrangement of newly formed chemical bonds. The center of the most intense Raman band of the Egmode at 143.8 cm−1in the undoped TiO2sample continually shifted to higher wave numbers and the full-width at half maximum increased with iron doping. Transmission electron microscopy revealed decrease of the mean particle size from 16.3 nm in undoped sample to 9.7 nm in the highest iron doped sample. The particle size distribution becomes narrower with iron doping. The narrowest particle size distribution was found in sample with the Fe/Ti molar ratio of 0.05, calcined at 500°C. Scanning electron microscopy of undoped samples calcined at 580°C showed irregular aggregates having a relatively flat surface. On the contrary, the samples doped with 15 mol% of iron and treated at the same temperature exhibited a non-uniform sponge-like surface with distributed micrometer holes.
- Published
- 2004
- Full Text
- View/download PDF