1. Multi-task deep neural network models for learning COVID-19 disease representations from multimodal data
- Author
-
Mayya, Veena, Karthik, K., Karadka, Krishnananda Prabhu, and Kamath, S. Sowmya
- Abstract
Over the continued course of the COVID-19 pandemic, a significant volume of expert-written diagnosis reports has been accumulated that capture a multitude of symptoms and observations on diagnosed COVID-19 cases, along with expert-validated chest X-ray scans. The utility of rich, latent information embedded in such unstructured expert-written diagnosis reports and its importance as a source of valuable disease-specific information has been explored to a very limited extent. In this work, a convolutional attention-based dense (CAD) neural model for COVID-19 prediction is proposed. The model is trained on the rich disease-specific parameters extracted from chest X-ray images and expert-written diagnostic text reports to support an evidence-based diagnosis. Scalability is ensured by incorporating content based learning models for automatically generating diagnosis reports of identified COVID-19 cases, reducing radiologists' cognitive burden. Experimental evaluation showed that multimodal patient data plays a vital role in diagnosing early-stage cases, thus helping hasten the diagnosis process.
- Published
- 2023
- Full Text
- View/download PDF