1. Local Electric Field Effects on Water Dissociation in Bipolar Membranes Studied Using Core–Shell Catalysts
- Author
-
Sarma, Prasad V., Kramar, Boris V., Chen, Lihaokun, Sasmal, Sayantan, Weingartz, Nicholas P., Huang, Jiawei, Mitchell, James B., Kwak, Minkyoung, Chen, Lin X., and Boettcher, Shannon W.
- Abstract
The local electric field strength is thought to affect the rate of water dissociation (WD) in bipolar membranes (BPMs) at the catalyst–nanoparticle surfaces. Here, we study core–shell nanoparticles, where the core is metallic, semiconducting, or insulating, to understand this effect. The nanoparticle cores were coated with a WD catalyst layer (TiO2or HfO2) via atomic layer deposition (ALD), and the morphology was imaged with transmission electron microscopy. Irrespective of the core material, these core–shell catalysts displayed comparable WD overpotentials at optimal mass loading, despite the hypothesized differences in the electric field strength across the catalyst particle suggested by continuum electrostatic simulations. Substantial atomic interdiffusion between the core and shell was ruled out by X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and diffuse reflectance optical measurements. However, the optimal mass loading of catalyst was roughly 1 order of magnitude higher for the conductive and high dielectric core materials than for the low dielectric insulating cores. These findings are consistent with the hypothesis that electric field screening within the core material focuses the electric field drop between particles such that larger film thicknesses can be tolerated. Collectively, these data support the idea that it is the local electric field at the molecular level that controls proton-transfer rates and that the metal core/dielectric-shell constructs introduced here modulate that field. Further materials and synthetic design may enable optimization of the electric field strength across the proton-transfer trajectory at the material surface.
- Published
- 2024
- Full Text
- View/download PDF