1. Inverse scattering for planar cracks via nonlinear integral equations
- Author
-
Ivanyshyn, O. and Kress, R.
- Abstract
We present a Newton‐type method for reconstructing planar sound‐soft or perfectly conducting cracks from far‐field measurements for one time‐harmonic scattering with plane wave incidence. Our approach arises from a method suggested by Kress and Rundell (Inv. Probl.2005; 21(4):1207–1223) for an inverse boundary value problem for the Laplace equation. It was extended to inverse scattering problems for sound‐soft obstacles (Mathematical Methods in Scattering Theory and Biomedical Engineering. World Scientific: Singapore, 2006; 39–50) and for sound‐hard cracks (Inv. Probl.2006; 22(6)). In both cases it was shown that the method gives accurate reconstructions with reasonable stability against noisy data. The approach is based on a pair of nonlinear and ill‐posed integral equations for the unknown boundary. The integral equations are solved by linearization, i.e. by regularized Newton iterations. Numerical reconstructions illustrate the feasibility of the method. Copyright © 2007 John Wiley & Sons, Ltd.
- Published
- 2008
- Full Text
- View/download PDF