1. Interfacial Engineering of Soft Matter Substrates by Solid-State Polymer Adsorption
- Author
-
Xu, Wenyang, Werzer, Oliver, Spiliopoulos, Panagiotis, Mihhels, Karl, Jiang, Qixiang, Meng, Zhuojun, Tao, Han, Resel, Roland, Tammelin, Tekla, Pettersson, Torbjörn, and Kontturi, Eero
- Abstract
Polymer coating to substrates alters surface chemistry and imparts bulk material functionalities with a minute thickness, even in nanoscale. Specific surface modification of a substate usually requires an active substrate that, e.g., undergoes a chemical reaction with the modifying species. Here, we present a generic method for surface modification, namely, solid-state adsorption, occurring purely by entropic strive. Formed by heating above the melting point or glass transition and subsequent rinsing of the excess polymer, the emerging ultrathin (<10 nm) layers are known in fundamental polymer physics but have never been utilized as building blocks for materials and they have never been explored on soft matter substrates. We show with model surfaces as well as bulk substrates, how solid-state adsorption of common polymers, such as polystyrene and poly(lactic acid), can be applied on soft, cellulose-based substrates. Our study showcases the versatility of solid-state adsorption across various polymer/substrate systems. Specifically, we achieve proof-of-concept hydrophobization on flexible cellulosic substrates, maintaining irreversible and miniscule adsorption yet with nearly 100% coverage without compromising the bulk material properties. The method can be considered generic for all polymers whose Tgand Tmare below those of the to-be-coated adsorbed layer, and whose integrity can withstand the solvent leaching conditions. Its full potential has broad implications for diverse materials systems where surface coatings play an important role, such as packaging, foldable electronics, or membrane technology.
- Published
- 2024
- Full Text
- View/download PDF