4,506 results on '"A. Cole"'
Search Results
2. Children and Young People's Writing in 2024
- Author
-
National Literacy Trust (United Kingdom), Christina Clark, Irene Picton, Aimee Cole, and Francesca Bonafede
- Abstract
This report builds on National Literacy Trust's previous research from the 2024 Annual Literacy Survey to investigate how children and young people felt about writing in early 2024. It includes findings on how many enjoyed writing and how often they wrote in their free time, what motivated them to write, and what they wrote. This report is based on 76,131 responses from children and young people aged 5 to 18 in schools across the UK in early 2024 and explores responses by age, gender, socioeconomic background, and geographical region. Findings show that children and young people's enjoyment of writing, and frequency of writing in their free time, is at an unprecedented low. Increasing evidence of a long-term downward trend calls for urgent action to reconnect children and young people with writing that promotes connection with creativity, self-expression and mental wellbeing.
- Published
- 2024
3. Fault-Tolerant Operation and Materials Science with Neutral Atom Logical Qubits
- Author
-
Bedalov, Matt. J., Blakely, Matt, Buttler, Peter. D., Carnahan, Caitlin, Chong, Frederic T., Chung, Woo Chang, Cole, Dan C., Goiporia, Palash, Gokhale, Pranav, Heim, Bettina, Hickman, Garrett T., Jones, Eric B., Jones, Ryan A., Khalate, Pradnya, Kim, Jin-Sung, Kuper, Kevin W., Lichtman, Martin T., Lee, Stephanie, Mason, David, Neff-Mallon, Nathan A., Noel, Thomas W., Omole, Victory, Radnaev, Alexander G., Rines, Rich, Saffman, Mark, Shabtai, Efrat, Teo, Mariesa H., Thotakura, Bharath, Tomesh, Teague, and Tucker, Angela K.
- Subjects
Quantum Physics ,Physics - Atomic Physics - Abstract
We report on the fault-tolerant operation of logical qubits on a neutral atom quantum computer, with logical performance surpassing physical performance for multiple circuits including Bell states (12x error reduction), random circuits (15x), and a prototype Anderson Impurity Model ground state solver for materials science applications (up to 6x, non-fault-tolerantly). The logical qubits are implemented via the [[4, 2, 2]] code (C4). Our work constitutes the first complete realization of the benchmarking protocol proposed by Gottesman 2016 [1] demonstrating results consistent with fault-tolerance. In light of recent advances on applying concatenated C4/C6 detection codes to achieve error correction with high code rates and thresholds, our work can be regarded as a building block towards a practical scheme for fault tolerant quantum computation. Our demonstration of a materials science application with logical qubits particularly demonstrates the immediate value of these techniques on current experiments.
- Published
- 2024
4. Quantum emitter in a plasmonic field: an orientation generalised model
- Author
-
Hapuarachchi, Harini, Vaitkus, Jesse A., and Cole, Jared H.
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
When a quantum emitter (QE) is placed in close proximity to a plasmonic metal nanoparticle (MNP) within an external optical field, a dipole-dipole coupling arises, resulting in a highly tunable hybrid nanosystem that surpasses the optical manipulation capabilities of the individual components. These hybrid systems enable the exploration and manipulation of optical fields at the intersection between classical and quantum phenomena. Theoretical models of this interaction have typically been limited to the extreme orientations, where the QE and plasmonic dipoles are polarised either along or perpendicular to the inter-particle axis, for analytical tractability. In this work, we generalise the semi-classical optical dipole-dipole interaction model for a two-level quantum emitter in a plasmonic field for arbitrary polarisation angles. We show that the total field experienced by the quantum emitter at intermediate angles does not necessarily align with the external input field and discuss the implications of varying the polarisation angle of the external input field., Comment: Comprises 9 pages and 4 figures. The code for result generation can be found at https://github.com/Harini-P-H/MNP-QE/
- Published
- 2024
5. MegaSaM: Accurate, Fast, and Robust Structure and Motion from Casual Dynamic Videos
- Author
-
Li, Zhengqi, Tucker, Richard, Cole, Forrester, Wang, Qianqian, Jin, Linyi, Ye, Vickie, Kanazawa, Angjoo, Holynski, Aleksander, and Snavely, Noah
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
We present a system that allows for accurate, fast, and robust estimation of camera parameters and depth maps from casual monocular videos of dynamic scenes. Most conventional structure from motion and monocular SLAM techniques assume input videos that feature predominantly static scenes with large amounts of parallax. Such methods tend to produce erroneous estimates in the absence of these conditions. Recent neural network-based approaches attempt to overcome these challenges; however, such methods are either computationally expensive or brittle when run on dynamic videos with uncontrolled camera motion or unknown field of view. We demonstrate the surprising effectiveness of a deep visual SLAM framework: with careful modifications to its training and inference schemes, this system can scale to real-world videos of complex dynamic scenes with unconstrained camera paths, including videos with little camera parallax. Extensive experiments on both synthetic and real videos demonstrate that our system is significantly more accurate and robust at camera pose and depth estimation when compared with prior and concurrent work, with faster or comparable running times. See interactive results on our project page: https://mega-sam.github.io/, Comment: Project page: https://mega-sam.github.io/
- Published
- 2024
6. Motion Prompting: Controlling Video Generation with Motion Trajectories
- Author
-
Geng, Daniel, Herrmann, Charles, Hur, Junhwa, Cole, Forrester, Zhang, Serena, Pfaff, Tobias, Lopez-Guevara, Tatiana, Doersch, Carl, Aytar, Yusuf, Rubinstein, Michael, Sun, Chen, Wang, Oliver, Owens, Andrew, and Sun, Deqing
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Motion control is crucial for generating expressive and compelling video content; however, most existing video generation models rely mainly on text prompts for control, which struggle to capture the nuances of dynamic actions and temporal compositions. To this end, we train a video generation model conditioned on spatio-temporally sparse or dense motion trajectories. In contrast to prior motion conditioning work, this flexible representation can encode any number of trajectories, object-specific or global scene motion, and temporally sparse motion; due to its flexibility we refer to this conditioning as motion prompts. While users may directly specify sparse trajectories, we also show how to translate high-level user requests into detailed, semi-dense motion prompts, a process we term motion prompt expansion. We demonstrate the versatility of our approach through various applications, including camera and object motion control, "interacting" with an image, motion transfer, and image editing. Our results showcase emergent behaviors, such as realistic physics, suggesting the potential of motion prompts for probing video models and interacting with future generative world models. Finally, we evaluate quantitatively, conduct a human study, and demonstrate strong performance. Video results are available on our webpage: https://motion-prompting.github.io/, Comment: Project page: https://motion-prompting.github.io/
- Published
- 2024
7. Advances and Challenges of Hexagonal Boron Nitride-based Anticorrosion Coatings
- Author
-
Kaya, Onurcan, Gabatel, Luca, Bellani, Sebastiano, Barberis, Fabrizio, Bonaccorso, Francesco, Cole, Ivan, and Roche, Stephan
- Subjects
Condensed Matter - Materials Science - Abstract
The corrosion of metallic surfaces poses significant challenges across industries such as petroleum, energy, and biomedical sectors, leading to structural degradation, safety risks, and substantial maintenance costs. Traditional organic and metallic coatings provide some protection, but their limited durability and susceptibility to harsh environmental conditions necessitate the development of more advanced and efficient solutions. This has driven significant interest in two-dimensional (2D) materials, with graphene extensively studied for its exceptional mechanical strength and impermeability to gases and ions. However, while graphene offers short-term corrosion protection, its high electrical conductivity presents a long-term issue by promoting galvanic corrosion on metal surfaces. In contrast, hexagonal boron nitride (h-BN) has emerged as a promising alternative for anticorrosion coatings. h-BN combines exceptional chemical stability, impermeability, and electrical insulation, making it particularly suited for long-term protection in highly corrosive or high-temperature environments. While h-BN holds promise as anticorrosion material, challenges such as structural defects, agglomeration of nanosheets, and poor dispersion within coatings limit its performance. This review provides a comprehensive analysis of recent advancements in addressing these challenges, including novel functionalization strategies, scalable synthesis methods, and hybrid systems that integrate h-BN with complementary materials. By bridging the gap between fundamental research and industrial applications, this review outlines the potential for h-BN to revolutionize anticorrosion technologies. These obstacles necessitate advanced strategies such as surface functionalization to improve compatibility with polymer matrices and dispersion optimization to minimize agglomeration., Comment: 28 pages, 3 figures
- Published
- 2024
8. Transverse magnetic focusing in two-dimensional hole gases
- Author
-
Lee, Yik K., Smith, Jackson S., Liu, Hong, Culcer, Dimitrie, Sushkov, Oleg P., Hamilton, Alexander R., and Cole, Jared H.
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Two-dimensional hole gases (2DHGs) have strong intrinsic spin-orbit coupling and could be used to build spin filters by utilising transverse magnetic focusing (TMF). However, with an increase in the spin degree of freedom, holes demonstrate significantly different behaviour to electrons in TMF experiments, making it difficult to interpret the results of these experiments. In this paper, we numerically model TMF in a 2DHG within a GaAs/Al$_{\mathrm{x}}$Ga$_{\mathrm{1-x}}$As heterostructure. Our band structure calculations show that the heavy $(\langle J_{z} \rangle = \pm\frac{3}{2})$ and light $(\langle J_{z} \rangle = \pm\frac{1}{2})$ hole states in the valence band mix at finite $k$, and the heavy hole subbands which are spin-split due to the Rashba effect are not spin-polarised. This lack of spin polarisation casts doubt on the viability of spin filtering using TMF in 2DHGs within conventional GaAs/Al$_{\mathrm{x}}$Ga$_{\mathrm{1-x}}$As heterostructures. We then calculate transport properties of the 2DHG with spin projection and offer a new perspective on interpreting and designing TMF experiments in 2DHGs.
- Published
- 2024
9. Generative Omnimatte: Learning to Decompose Video into Layers
- Author
-
Lee, Yao-Chih, Lu, Erika, Rumbley, Sarah, Geyer, Michal, Huang, Jia-Bin, Dekel, Tali, and Cole, Forrester
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Given a video and a set of input object masks, an omnimatte method aims to decompose the video into semantically meaningful layers containing individual objects along with their associated effects, such as shadows and reflections. Existing omnimatte methods assume a static background or accurate pose and depth estimation and produce poor decompositions when these assumptions are violated. Furthermore, due to the lack of generative prior on natural videos, existing methods cannot complete dynamic occluded regions. We present a novel generative layered video decomposition framework to address the omnimatte problem. Our method does not assume a stationary scene or require camera pose or depth information and produces clean, complete layers, including convincing completions of occluded dynamic regions. Our core idea is to train a video diffusion model to identify and remove scene effects caused by a specific object. We show that this model can be finetuned from an existing video inpainting model with a small, carefully curated dataset, and demonstrate high-quality decompositions and editing results for a wide range of casually captured videos containing soft shadows, glossy reflections, splashing water, and more., Comment: Project page: https://gen-omnimatte.github.io/
- Published
- 2024
10. A Sound Horizon-Free Measurement of $H_0$ in DESI 2024
- Author
-
Zaborowski, E. A., Taylor, P., Honscheid, K., Cuceu, A., de Mattia, A., Huterer, D., Krolewski, A., Martini, P., Ross, A. J., To, C., Torres, A., Ahlen, S., Bianchi, D., Brooks, D., Buckley-Geer, E., Burtin, E., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Dey, Biprateep, Doel, P., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gutierrez, G., Guy, J., Hahn, C., Howlett, C., Juneau, S., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Levi, M. E., Magneville, C., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Weaver, B. A., and Wechsler, R. H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The physical size of the sound horizon at recombination is a powerful source of information for early-time measurements of the Hubble constant $H_0$, and many proposed solutions to the Hubble tension therefore involve modifications to this scale. In light of this, there has been growing interest in measuring $H_0$ independently of the sound horizon. We present the first such measurement to use data from the Dark Energy Spectroscopic Instrument (DESI), jointly analyzing the full-shape galaxy power spectra of DESI luminous red galaxies, emission line galaxies, quasars, and the bright galaxy sample, in a total of six redshift bins. Information from the sound horizon scale is removed from our constraints via a rescaling procedure at the power spectrum level, with our sound horizon-marginalized measurement being driven instead primarily by the matter-radiation equality scale. This measurement is then combined with additional sound horizon-free information from Planck+ACT CMB lensing, uncalibrated type Ia supernovae, and the DESI Lyman-$\alpha$ forest. We agnostically combine with the DESY5, Pantheon+, and Union3 supernova datasets, with our tightest respective constraints being $H_0=66.7^{+1.7}_{-1.9},~67.9^{+1.9}_{-2.1},$ and $67.8^{+2.0}_{-2.2}$ km s-1 Mpc-1. This corresponds to a sub-3% sound horizon-free constraint of the Hubble constant, and is the most precise measurement of its kind to date. Even without including information from the sound horizon, our measurement is still in 2.2-3.0$\sigma$ tension with SH0ES. Additionally, the consistency between our result and other measurements that do rely on the sound horizon scale provides no evidence for new early-Universe physics (e.g. early dark energy). Future DESI data releases will allow unprecedented measurements of $H_0$ and place strong constraints on models that use beyond-$\Lambda$CDM physics to ameliorate the Hubble tension., Comment: 17+7 pages; 5 figures. Submitted to JCAP
- Published
- 2024
11. Dynamic Tube MPC: Learning Tube Dynamics with Massively Parallel Simulation for Robust Safety in Practice
- Author
-
Compton, William D., Csomay-Shanklin, Noel, Johnson, Cole, and Ames, Aaron D.
- Subjects
Computer Science - Robotics ,Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Systems and Control - Abstract
Safe navigation of cluttered environments is a critical challenge in robotics. It is typically approached by separating the planning and tracking problems, with planning executed on a reduced order model to generate reference trajectories, and control techniques used to track these trajectories on the full order dynamics. Inevitable tracking error necessitates robustification of the nominal plan to ensure safety; in many cases, this is accomplished via worst-case bounding, which ignores the fact that some trajectories of the planning model may be easier to track than others. In this work, we present a novel method leveraging massively parallel simulation to learn a dynamic tube representation, which characterizes tracking performance as a function of actions taken by the planning model. Planning model trajectories are then optimized such that the dynamic tube lies in the free space, allowing a balance between performance and safety to be traded off in real time. The resulting Dynamic Tube MPC is applied to the 3D hopping robot ARCHER, enabling agile and performant navigation of cluttered environments, and safe collision-free traversal of narrow corridors., Comment: Submitted to ICRA 2025
- Published
- 2024
12. An improved, high yield method for isolating nuclei from individual zebrafish embryos for single-nucleus RNA sequencing
- Author
-
Rostomily, Clifford, Lee, Heidi, Tresenrider, Amy, Daza, Riza, Mullen, Andrew, Shendure, Jay, Kimelman, David, and Trapnell, Cole
- Subjects
Quantitative Biology - Genomics - Abstract
Zebrafish are an ideal system to study the effect(s) of chemical, genetic, and environmental perturbations on development due to their high fecundity and fast growth. Recently, single cell sequencing has emerged as a powerful tool to measure the effect of these perturbations at a whole embryo scale. These types of experiments rely on the ability to isolate nuclei from a large number of individually barcoded zebrafish embryos in parallel. Here we report a method for efficiently isolating high-quality nuclei from zebrafish embryos in a 96-well plate format by bead homogenization in a lysis buffer. Through head-to-head sciPlex-RNA-seq experiments, we demonstrate that this method represents a substantial improvement over enzymatic dissociation and that it is compatible with a wide range of developmental stages., Comment: Clifford Rostomily and Heidi Lee contributed equally to this work
- Published
- 2024
13. Analytical and EZmock covariance validation for the DESI 2024 results
- Author
-
Forero-Sánchez, Daniel, Rashkovetskyi, Michael, Alves, Otávio, de Mattia, Arnaud, Nadathur, Seshadri, Zarrouk, Pauline, Gil-Marín, Héctor, Ding, Zhejie, Yu, Jiaxi, Andrade, Uendert, Chen, Xinyi, Garcia-Quintero, Cristhian, Mena-Fernández, Juan, Ahlen, Steven, Bianchi, Davide, Brooks, David, Burtin, Etienne, Chaussidon, Edmond, Claybaugh, Todd, Cole, Shaun, de la Macorra, Axel, Vargas, Miguel Enriquez, Gaztañaga, Enrique, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Kisner, Theodore, Landriau, Martin, Guillou, Laurent Le, Levi, Michael, Miquel, Ramon, Moustakas, John, Palanque-Delabrouille, Nathalie, Percival, Will, Pérez-Ràfols, Ignasi, Ross, Ashley J., Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Seo, Hee-Jong, Sprayberry, David, Tarlé, Gregory, Magana, Mariana Vargas, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The estimation of uncertainties in cosmological parameters is an important challenge in Large-Scale-Structure (LSS) analyses. For standard analyses such as Baryon Acoustic Oscillations (BAO) and Full Shape, two approaches are usually considered. First: analytical estimates of the covariance matrix use Gaussian approximations and (nonlinear) clustering measurements to estimate the matrix, which allows a relatively fast and computationally cheap way to generate matrices that adapt to an arbitrary clustering measurement. On the other hand, sample covariances are an empirical estimate of the matrix based on en ensemble of clustering measurements from fast and approximate simulations. While more computationally expensive due to the large amount of simulations and volume required, these allow us to take into account systematics that are impossible to model analytically. In this work we compare these two approaches in order to enable DESI's key analyses. We find that the configuration space analytical estimate performs satisfactorily in BAO analyses and its flexibility in terms of input clustering makes it the fiducial choice for DESI's 2024 BAO analysis. On the contrary, the analytical computation of the covariance matrix in Fourier space does not reproduce the expected measurements in terms of Full Shape analyses, which motivates the use of a corrected mock covariance for DESI's Full Shape analysis., Comment: 23 pages, 5 figures 7 tables, submitted to JCAP
- Published
- 2024
14. Modified Gravity Constraints from the Full Shape Modeling of Clustering Measurements from DESI 2024
- Author
-
Ishak, M., Pan, J., Calderon, R., Lodha, K., Valogiannis, G., Aviles, A., Niz, G., Yi, L., Zheng, C., Garcia-Quintero, C., de Mattia, A., Medina-Varela, L., Cervantes-Cota, J. L., Andrade, U., Huterer, D., Noriega, H. E., Zhao, G., Shafieloo, A., Fang, W., Ahlen, S., Bianchi, D., Brooks, D., Burtin, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Fanning, K., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gutierrez, G., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Leauthaud, A., Levi, M. E., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Prada, F., Pérez-Ràfols, I., Ross, A. J., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magana, M., Weaver, B. A., Wechsler, R. H., Yèche, C., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological constraints on deviations from general relativity (GR) from the first-year of clustering observations from the Dark Energy Spectroscopic Instrument (DESI) in combination with other datasets. We first consider the $\mu(a,k)$-$\Sigma(a,k)$ modified gravity (MG) parametrization (as well as $\eta(a,k)$) in flat $\Lambda$CDM and $w_0 w_a$CDM backgrounds. Using a functional form for time-only evolution gives $\mu_0= 0.11^{+0.44}_{-0.54}$ from DESI(FS+BAO)+BBN and a wide prior on $n_{s}$. Using DESI(FS+BAO)+CMB+DESY3+DESY5-SN, we obtain $\mu_0 = 0.05\pm 0.22$ and $\Sigma_0 = 0.009\pm 0.045$ in the $\Lambda$CDM background. In $w_0 w_a$CDM, we obtain $\mu_0 =-0.24^{+0.32}_{-0.28}$ and $\Sigma_0 = 0.006\pm 0.043$, consistent with GR, and we still find a preference of the data for dynamical dark energy with $w_0>-1$ and $w_a<0$. We then use binned forms in the two backgrounds starting with two bins in redshift and then combining them with two bins in scale for a total of 4 and 8 MG parameters, respectively. All MG parameters are found consistent with GR. We also find that the tension reported for $\Sigma_0$ with GR when using Planck PR3 goes away when we use the recent LoLLiPoP+HiLLiPoP likelihoods. As noted previously, this seems to indicate that the tension is related to the CMB lensing anomaly in PR3 which is also alleviated when using these likelihoods. We then constrain the class of Horndeski theory in the effective field theory of dark energy. We consider both EFT-basis and $\alpha$-basis. Assuming a power law parametrization for the function $\Omega$, which controls non-minimal coupling, we obtain $\Omega_0 = 0.0120^{+0.0021}_{-0.013}$ and $s_0 = 0.99^{+0.54}_{-0.20}$ from DESI(FS+BAO)+DESY5SN+CMB in a $\Lambda$CDM background. Similar results are obtained when using the $\alpha$-basis, where we constrain $c_M<1.24$, and are all consistent with GR. [Abridged.], Comment: 52 pages, 10 figures. This DESI Collaboration Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/)
- Published
- 2024
15. Characterization of DESI fiber assignment incompleteness effect on 2-point clustering and mitigation methods for DR1 analysis
- Author
-
Bianchi, D., Hanif, M. M. S, Rosell, A. Carnero, Lasker, J., Ross, A. J., Pinon, M., de Mattia, A., White, M., Ahlen, S., Bailey, S., Brooks, D., Burtin, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Levi, M. E., McDonald, P., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Raichoor, A., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sharples, R., Silber, J., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present an in-depth analysis of the fiber assignment incompleteness in the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1). This incompleteness is caused by the restricted mobility of the robotic fiber positioner in the DESI focal plane, which limits the number of galaxies that can be observed at the same time, especially at small angular separations. As a result, the observed clustering amplitude is suppressed in a scale-dependent manner, which, if not addressed, can severely impact the inference of cosmological parameters. We discuss the methods adopted for simulating fiber assignment on mocks and data. In particular, we introduce the fast fiber assignment (FFA) emulator, which was employed to obtain the power spectrum covariance adopted for the DR1 full-shape analysis. We present the mitigation techniques, organised in two classes: measurement stage and model stage. We then use high fidelity mocks as a reference to quantify both the accuracy of the FFA emulator and the effectiveness of the different measurement-stage mitigation techniques. This complements the studies conducted in a parallel paper for the model-stage techniques, namely the $\theta$-cut approach. We find that pairwise inverse probability (PIP) weights with angular upweighting recover the "true" clustering in all the cases considered, in both Fourier and configuration space. Notably, we present the first ever power spectrum measurement with PIP weights from real data., Comment: 42 pages, 19 figures
- Published
- 2024
16. DESI 2024 VII: Cosmological Constraints from the Full-Shape Modeling of Clustering Measurements
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Prieto, C. Allende, Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bahr-Kalus, B., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Bonici, M., Brieden, S., Brodzeller, A., Brooks, D., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chebat, D., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elbers, W., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Garcia-Quintero, C., Garrison, L. H., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Joyce, R., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kong, H., Koposov, S. E., Kremin, A., Krolewski, A., Lahav, O., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Matthewson, W., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mudur, N., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Schubnell, M., Seo, H., Shafieloo, A., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Taylor, P., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Valogiannis, G., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yi, L., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., Zhuang, T., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological results from the measurement of clustering of galaxy, quasar and Lyman-$\alpha$ forest tracers from the first year of observations with the Dark Energy Spectroscopic Instrument (DESI Data Release 1). We adopt the full-shape (FS) modeling of the power spectrum, including the effects of redshift-space distortions, in an analysis which has been validated in a series of supporting papers. In the flat $\Lambda$CDM cosmological model, DESI (FS+BAO), combined with a baryon density prior from Big Bang Nucleosynthesis and a weak prior on the scalar spectral index, determines matter density to $\Omega_\mathrm{m}=0.2962\pm 0.0095$, and the amplitude of mass fluctuations to $\sigma_8=0.842\pm 0.034$. The addition of the cosmic microwave background (CMB) data tightens these constraints to $\Omega_\mathrm{m}=0.3056\pm 0.0049$ and $\sigma_8=0.8121\pm 0.0053$, while further addition of the the joint clustering and lensing analysis from the Dark Energy Survey Year-3 (DESY3) data leads to a 0.4% determination of the Hubble constant, $H_0 = (68.40\pm 0.27)\,{\rm km\,s^{-1}\,Mpc^{-1}}$. In models with a time-varying dark energy equation of state, combinations of DESI (FS+BAO) with CMB and type Ia supernovae continue to show the preference, previously found in the DESI DR1 BAO analysis, for $w_0>-1$ and $w_a<0$ with similar levels of significance. DESI data, in combination with the CMB, impose the upper limits on the sum of the neutrino masses of $\sum m_\nu < 0.071\,{\rm eV}$ at 95% confidence. DESI data alone measure the modified-gravity parameter that controls the clustering of massive particles, $\mu_0=0.11^{+0.45}_{-0.54}$, while the combination of DESI with the CMB and the clustering and lensing analysis from DESY3 constrains both modified-gravity parameters, giving $\mu_0 = 0.04\pm 0.22$ and $\Sigma_0 = 0.044\pm 0.047$, in agreement with general relativity. [Abridged.], Comment: This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 55 pages, 10 figures
- Published
- 2024
17. DESI 2024 II: Sample Definitions, Characteristics, and Two-point Clustering Statistics
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Brieden, S., Brodzeller, A., Brooks, D., Brown, Z., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Demina, R., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Garcia-Quintero, C., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Hou, J., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kitaura, F. -S., Kong, H., Kremin, A., Krolewski, A., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mudur, N., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the samples of galaxies and quasars used for DESI 2024 cosmological analyses, drawn from the DESI Data Release 1 (DR1). We describe the construction of large-scale structure (LSS) catalogs from these samples, which include matched sets of synthetic reference `randoms' and weights that account for variations in the observed density of the samples due to experimental design and varying instrument performance. We detail how we correct for variations in observational completeness, the input `target' densities due to imaging systematics, and the ability to confidently measure redshifts from DESI spectra. We then summarize how remaining uncertainties in the corrections can be translated to systematic uncertainties for particular analyses. We describe the weights added to maximize the signal-to-noise of DESI DR1 2-point clustering measurements. We detail measurement pipelines applied to the LSS catalogs that obtain 2-point clustering measurements in configuration and Fourier space. The resulting 2-point measurements depend on window functions and normalization constraints particular to each sample, and we present the corrections required to match models to the data. We compare the configuration- and Fourier-space 2-point clustering of the data samples to that recovered from simulations of DESI DR1 and find they are, generally, in statistical agreement to within 2\% in the inferred real-space over-density field. The LSS catalogs, 2-point measurements, and their covariance matrices will be released publicly with DESI DR1., Comment: This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/)
- Published
- 2024
18. DESI 2024 V: Full-Shape Galaxy Clustering from Galaxies and Quasars
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Brieden, S., Brodzeller, A., Brooks, D., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Garcia-Quintero, C., Garrison, L. H., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kong, H., Koposov, S. E., Kremin, A., Krolewski, A., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Rodríguez-Martínez, F., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Schubnell, M., Seo, H., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the measurements and cosmological implications of the galaxy two-point clustering using over 4.7 million unique galaxy and quasar redshifts in the range $0.1
- Published
- 2024
19. Exploring HOD-dependent systematics for the DESI 2024 Full-Shape galaxy clustering analysis
- Author
-
Findlay, N., Nadathur, S., Percival, W. J., de Mattia, A., Zarrouk, P., Gil-Marín, H., Alves, O., Mena-Fernández, J., Garcia-Quintero, C., Rocher, A., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Doel, P., Fanning, K., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gutierrez, G., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Levi, M. E., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., and Weaver, B. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyse the robustness of the DESI 2024 cosmological inference from fits to the full shape of the galaxy power spectrum to uncertainties in the Halo Occupation Distribution (HOD) model of the galaxy-halo connection and the choice of priors on nuisance parameters. We assess variations in the recovered cosmological parameters across a range of mocks populated with different HOD models and find that shifts are often greater than 20% of the expected statistical uncertainties from the DESI data. We encapsulate the effect of such shifts in terms of a systematic covariance term, $\mathsf{C}_{\rm HOD}$, and an additional diagonal contribution quantifying the impact of our choice of nuisance parameter priors on the ability of the effective field theory (EFT) model to correctly recover the cosmological parameters of the simulations. These two covariance contributions are designed to be added to the usual covariance term, $\mathsf{C}_{\rm stat}$, describing the statistical uncertainty in the power spectrum measurement, in order to fairly represent these sources of systematic uncertainty. This approach is more general and robust to choices of model free parameters or additional external datasets used in cosmological fits than the alternative approach of adding systematic uncertainties at the level of the recovered marginalised parameter posteriors. We compare the approaches within the context of a fixed $\Lambda$CDM model and demonstrate that our method gives conservative estimates of the systematic uncertainty that nevertheless have little impact on the final posteriors obtained from DESI data., Comment: This DESI Collaboration Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 26 pages, 10 figures
- Published
- 2024
20. DESIVAST: A Catalog of Low-Redshift Voids using Data from the DESI DR1 Bright Galaxy Survey
- Author
-
Rincon, Hernan, BenZvi, Segev, Douglass, Kelly, Veyrat, Dahlia, Aguilar, Jessica Nicole, Ahlen, Steven, Bianchi, Davide, Brooks, David, Claybaugh, Todd, Cole, Shaun, de la Macorra, Axel, Doel, Peter, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Juneau, Stephanie, Kehoe, Robert, Koposov, Sergey, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Niz, Gustavo, Percival, Will, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Seo, Hee-Jong, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present three separate void catalogs created using a volume-limited sample of the DESI Year 1 Bright Galaxy Survey. We use the algorithms VoidFinder and V2 to construct void catalogs out to a redshift of z=0.24. We obtain 1,461 interior voids with VoidFinder, 420 with V2 using REVOLVER pruning, and 295 with V2 using VIDE pruning. Comparing our catalog with an overlapping SDSS void catalog, we find generally consistent void properties but significant differences in the void volume overlap, which we attribute to differences in the galaxy selection and survey masks. These catalogs are suitable for studying the variation in galaxy properties with cosmic environment and for cosmological studies., Comment: 17 pages, 6 figures
- Published
- 2024
21. Quantitative measure of topological protection in Floquet systems through the spectral localizer
- Author
-
Wong, Stephan, Cerjan, Alexander, and Cole, Justin T.
- Subjects
Physics - Optics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Materials Science ,Mathematical Physics - Abstract
The standard understanding of topological protection from band theory is that a system's topology cannot change without first closing the bulk band gap. However, in Floquet systems, this typical definition of topological protection is one step removed from the experimentally accessible system parameters, as the relationship between the disorder in a system's instantaneous Hamiltonian and its Floquet Hamiltonian that defines its topology is not straightforward. Here, we demonstrate that the spectral localizer framework for classifying material topology can be applied to Floquet systems and prove that its associated measure of topological protection can be understood in terms of the integrated disorder across the system's instantaneous Hamiltonians. As such, we have derived a quantitative bound on a Floquet system's topological protection in terms of the instantaneous system. Moreover, we show the utility of these bounds in both ordinary an anomalous Floquet Chern insulators., Comment: 6 pages, 4 figures
- Published
- 2024
22. ReaWristic: Remote Touch Sensation to Fingers from a Wristband via Visually Augmented Electro-Tactile Feedback
- Author
-
Tanaka, Yudai, Weiss, Neil, Bolger-Cruz, Robert Cole, Hartcher-O'Brien, Jess, Flynn, Brendan, Boldu, Roger, and Colonnese, Nicholas
- Subjects
Computer Science - Human-Computer Interaction - Abstract
We present a technique for providing remote tactile feedback to the thumb and index finger via a wristband device. This enables haptics for touch and pinch interactions in mixed reality (MR) while keeping the hand entirely free. We achieve this through a novel cross-modal stimulation, which we term visually augmented electro-tactile feedback. This consists of (1) electrically stimulating the nerves that innervate the targeted fingers using our wristband device and (2) concurrently, visually augmenting the targeted finger in MR to steer the perceived sensation to the desired location. In our psychophysics study, we found that our approach provides tactile perception akin to tapping and, even from the wrist, it is capable of delivering the sensation to the targeted fingers with about 50% of sensation occurring in the thumb and about 40% of sensation occurring in the index finger. These results on localizability are unprecedented compared to electro-tactile feedback alone or any prior work for creating sensations in the hand with devices worn on the wrist/arm. Moreover, unlike conventional electro-tactile techniques, our wristband dispenses with gel electrodes. Instead, it incorporates custom-made elastomer-based dry electrodes and a stimulation waveform designed for the electrodes, ensuring the practicality of the device beyond laboratory settings. Lastly, we evaluated the haptic realism of our approach in mixed reality and elicited qualitative feedback from users. Participants preferred our approach to a baseline vibrotactile wrist-worn device., Comment: 10 pages, 14 figures, published at IEEE ISMAR 2024
- Published
- 2024
- Full Text
- View/download PDF
23. Behavior of water and aqueous LiCl solutions confined in cylindrical silica pores: A wide temperature range molecular dynamics simulation study
- Author
-
Gautam, Siddharth, Vlcek, Lukas, Mamontov, Eugene, and Cole, David
- Subjects
Condensed Matter - Soft Condensed Matter ,Physics - Chemical Physics - Abstract
We report here a molecular dynamics simulation study on water and aqueous LiCl solutions confined in 1.6 nm cylindrical pores of silica to investigate a dynamical cross-over, observed earlier experimentally, wherein LiCl slows down confined water at high temperatures but makes it faster at lower temperatures. The cross-over observed in the experiments is reproduced in the simulations, albeit at lower temperature. Moreover, the cross-over encompasses all aspects of dynamics including translation as well as rotation. Both addition of LiCl and confinement result in a breaking of hydrogen bond network in confined water, eliminating the need for long jumps via exchange of hydrogen bonded partner molecules. This lowers the activation energy for diffusion in the electrolyte solution compared to pure confined water and leads to the dynamical cross-over seen at lower temperatures. Our results thus provide an explanation to the experimentally observed phenomena and provide important insights on the interplay of confinement, temperature and presence of electrolytes on the dynamical behavior of nano-confined water., Comment: 13 pages with 8 figures in the main article along with a supplement appended at the end with 2 tables and 1 figure
- Published
- 2024
24. The unabridged satellite luminosity function of Milky Way-like galaxies in $\Lambda$CDM: the contribution of 'orphan' satellites
- Author
-
Santos-Santos, Isabel, Frenk, Carlos, Navarro, Julio, Cole, Shaun, and Helly, John
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We study the abundance, radial distribution, and orbits of luminous satellites in simulations of Milky Way-mass dark halos in the $\Lambda$CDM cosmology. We follow the evolution of a halo from the Aquarius project and the formation of satellites with the GALFORM semi-analytic model of galaxy formation, in which gas cools radiatively into halos before reionization and in halos that exceed a redshift-dependent ``critical'' virial mass after that. Subhalos are prone to disruption in the tidal field of the main halo, with the number of surviving self-bound subhalos increasing with resolution. Even in the highest resolution simulation (Aq-L1, with particle mass $m_{\rm p}\sim10^3\, M_\odot$), a substantial number of subhalos are disrupted but their galaxies may survive as ``orphans''. Whether or not a satellite becomes an orphan depends primarily on its time of infall. When orphans are included, the simulations yield a converged satellite stellar mass function across different resolution levels. The total number of luminous satellites is sensitive to the assumed redshift of reionization, but the shape of the satellite stellar mass function is robust, peaking at the stellar mass ($\sim 10^3\, M_\odot$) of a halo just above the critical threshold. Most orphans are found in the central regions of the main halo and make up roughly half of all satellites in Aq-L1. When orphans are taken into account there is no need to populate subhalos below the critical mass with satellites to fit the radial distribution of Milky Way satellites, as had been argued in recent work. Our model predicts that orphans dominate the ultra-faint population and that many more satellites with small apocentric radii should be detected in upcoming deep wide-field surveys., Comment: 16 pages, 10 figures, submitted to MNRAS
- Published
- 2024
25. Towards next-generation optical potentials for nuclear reactions and structure calculations
- Author
-
Perrotta, Salvatore Simone, Pruitt, Cole Davis, Gorton, Oliver C., and Escher, Jutta E.
- Subjects
Nuclear Theory - Abstract
Optical-model potentials (OMPs) are critical ingredients for basic and applied nuclear physics. Present-day computational capabilities allow us to generate data-driven nucleon-nucleus OMPs that are non-local and exactly dispersive (as theoretically required to be), include statistically-sound uncertainty quantification, and are trained on both scattering and bound-state data from a wide area of the nuclear chart. Combined together, these features allow for significant improvement in fidelity and extrapolative power of the model. Here, we present preliminary work toward the development and training of such an OMP. The capability of the model to describe data at this first stage is encouraging.
- Published
- 2024
26. Are Large Language Models Ready for Travel Planning?
- Author
-
Ren, Ruiping, Yao, Xing, Cole, Shu, and Wang, Haining
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Computers and Society - Abstract
While large language models (LLMs) show promise in hospitality and tourism, their ability to provide unbiased service across demographic groups remains unclear. This paper explores gender and ethnic biases when LLMs are utilized as travel planning assistants. To investigate this issue, we apply machine learning techniques to analyze travel suggestions generated from three open-source LLMs. Our findings reveal that the performance of race and gender classifiers substantially exceeds random chance, indicating differences in how LLMs engage with varied subgroups. Specifically, outputs align with cultural expectations tied to certain races and genders. To minimize the effect of these stereotypes, we used a stop-word classification strategy, which decreased identifiable differences, with no disrespectful terms found. However, hallucinations related to African American and gender minority groups were noted. In conclusion, while LLMs can generate travel plans seemingly free from bias, it remains essential to verify the accuracy and appropriateness of their recommendations.
- Published
- 2024
27. DIRI: Adversarial Patient Reidentification with Large Language Models for Evaluating Clinical Text Anonymization
- Author
-
Morris, John X., Campion, Thomas R., Nutheti, Sri Laasya, Peng, Yifan, Raj, Akhil, Zabih, Ramin, and Cole, Curtis L.
- Subjects
Computer Science - Computation and Language - Abstract
Sharing protected health information (PHI) is critical for furthering biomedical research. Before data can be distributed, practitioners often perform deidentification to remove any PHI contained in the text. Contemporary deidentification methods are evaluated on highly saturated datasets (tools achieve near-perfect accuracy) which may not reflect the full variability or complexity of real-world clinical text and annotating them is resource intensive, which is a barrier to real-world applications. To address this gap, we developed an adversarial approach using a large language model (LLM) to re-identify the patient corresponding to a redacted clinical note and evaluated the performance with a novel De-Identification/Re-Identification (DIRI) method. Our method uses a large language model to reidentify the patient corresponding to a redacted clinical note. We demonstrate our method on medical data from Weill Cornell Medicine anonymized with three deidentification tools: rule-based Philter and two deep-learning-based models, BiLSTM-CRF and ClinicalBERT. Although ClinicalBERT was the most effective, masking all identified PII, our tool still reidentified 9% of clinical notes Our study highlights significant weaknesses in current deidentification technologies while providing a tool for iterative development and improvement.
- Published
- 2024
28. Modal decomposition of localized plasmon on gold nanoparticles
- Author
-
Yuan, Gangcheng, Cole, Jared H., and Funston, Alison M.
- Subjects
Physics - Optics ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Localized surface plasmons (LSPs) are collective oscillations of free electrons in metal nanoparticles that confine electromagnetic waves into subwavelength regions, making them an ideal platform for light-matter coupling. To design and understand plasmonic structures, numerical computations of Maxwell's equations are commonly used. However, obtaining physical insight from these numerical solutions can be challenging, especially for complex-shaped nanoparticles. To circumvent this, we introduce mode decomposition strategies within the boundary element method (BEM). By employing singular value decomposition (SVD) and quasi-normal mode (QNM) decomposition, we break down optical responses into elementary modes. QNMs offer deeper insights into frequency and damping, while SVD modes allow for more accurate spectral reconstruction with fast computation. These techniques provide a deeper understanding of LSPs and facilitates the design of metal nanoparticles for efficient light-matter interaction.
- Published
- 2024
29. A Low Metallicity Massive Contact Binary Star System Candidate in WLM identified by Hubble and James Webb Space Telescope imaging
- Author
-
Gull, Maude, Weisz, Daniel R., El-Badry, Kareem, Henneco, Jan, Savino, Alessandro, Durbin, Meredith, Choi, Yumi, Cohen, Roger E., Cole, Andrew A., Correnti, Matteo, Dalcanton, Julianne J., Gilbert, Karoline M., Goldman, Steven R., Guhathakurta, Puragra, McQuinn, Kristen B. W., Newman, Max J. B., Skillman, Evan D., and Williams, Benjamin F.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
We present archival HST and JWST ultraviolet through near infrared time series photometric observations of a massive minimal-contact binary candidate in the metal-poor galaxy WLM ($Z = 0.14 Z_{\odot}$). This discovery marks the lowest metallicity contact binary candidate observed to date. We determine the nature of the two stars in the binary by using the eclipsing binary modeling software (PHysics Of Eclipsing BinariEs; PHOEBE) to train a neural network to fit our observed panchromatic multi-epoch photometry. The best fit model consists of two hot MS stars ($T_1=29800^{+2300}_{-1700}$ K, $M_1=16^{+2}_{-3}~M_{\odot}$, and $T_2=18000^{+5000}_{-5000}$ K, $M_2=7^{+5}_{-3}~M_{\odot}$). We discuss plausible evolutionary paths for the system, and suggest the system is likely to be currently in a contact phase before ultimately ending in a merger. Future spectroscopy will help to further narrow down evolutionary pathways. This work showcases a novel use of data of JWST and HST imaging originally taken to characterize RR Lyrae. We expect time series imaging from LSST, BlackGEM, etc. to uncover similar types of objects in nearby galaxies., Comment: comments welcome
- Published
- 2024
30. PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters
- Author
-
Ghazimatin, Azin, Garmash, Ekaterina, Penha, Gustavo, Sheets, Kristen, Achenbach, Martin, Semerci, Oguz, Galvez, Remi, Tannenberg, Marcus, Mantravadi, Sahitya, Narayanan, Divya, Kalaydzhyan, Ofeliya, Cole, Douglas, Carterette, Ben, Clifton, Ann, Bennett, Paul N., Hauff, Claudia, and Lalmas, Mounia
- Subjects
Computer Science - Information Retrieval ,Computer Science - Artificial Intelligence ,68P20 ,H.3.3 - Abstract
Listeners of long-form talk-audio content, such as podcast episodes, often find it challenging to understand the overall structure and locate relevant sections. A practical solution is to divide episodes into chapters--semantically coherent segments labeled with titles and timestamps. Since most episodes on our platform at Spotify currently lack creator-provided chapters, automating the creation of chapters is essential. Scaling the chapterization of podcast episodes presents unique challenges. First, episodes tend to be less structured than written texts, featuring spontaneous discussions with nuanced transitions. Second, the transcripts are usually lengthy, averaging about 16,000 tokens, which necessitates efficient processing that can preserve context. To address these challenges, we introduce PODTILE, a fine-tuned encoder-decoder transformer to segment conversational data. The model simultaneously generates chapter transitions and titles for the input transcript. To preserve context, each input text is augmented with global context, including the episode's title, description, and previous chapter titles. In our intrinsic evaluation, PODTILE achieved an 11% improvement in ROUGE score over the strongest baseline. Additionally, we provide insights into the practical benefits of auto-generated chapters for listeners navigating episode content. Our findings indicate that auto-generated chapters serve as a useful tool for engaging with less popular podcasts. Finally, we present empirical evidence that using chapter titles can enhance effectiveness of sparse retrieval in search tasks., Comment: 9 pages, 4 figures, CIKM industry track 2024
- Published
- 2024
- Full Text
- View/download PDF
31. VidPanos: Generative Panoramic Videos from Casual Panning Videos
- Author
-
Ma, Jingwei, Lu, Erika, Paiss, Roni, Zada, Shiran, Holynski, Aleksander, Dekel, Tali, Curless, Brian, Rubinstein, Michael, and Cole, Forrester
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Graphics ,I.3.3 ,I.4 - Abstract
Panoramic image stitching provides a unified, wide-angle view of a scene that extends beyond the camera's field of view. Stitching frames of a panning video into a panoramic photograph is a well-understood problem for stationary scenes, but when objects are moving, a still panorama cannot capture the scene. We present a method for synthesizing a panoramic video from a casually-captured panning video, as if the original video were captured with a wide-angle camera. We pose panorama synthesis as a space-time outpainting problem, where we aim to create a full panoramic video of the same length as the input video. Consistent completion of the space-time volume requires a powerful, realistic prior over video content and motion, for which we adapt generative video models. Existing generative models do not, however, immediately extend to panorama completion, as we show. We instead apply video generation as a component of our panorama synthesis system, and demonstrate how to exploit the strengths of the models while minimizing their limitations. Our system can create video panoramas for a range of in-the-wild scenes including people, vehicles, and flowing water, as well as stationary background features., Comment: Project page at https://vidpanos.github.io/. To appear at SIGGRAPH Asia 2024 (conference track)
- Published
- 2024
32. Galaxy Mass Modelling from Multi-Wavelength JWST Strong Lens Analysis: Dark Matter Substructure, Angular Mass Complexity, or Both?
- Author
-
Lange, Samuel C., Amvrosiadis, Aristeidis, Nightingale, James W., He, Qiuhan, Frenk, Carlos S., Robertson, Andrew, Cole, Shaun, Massey, Richard, Cao, Xiaoyue, Li, Ran, and Wang, Kaihao
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyze two galaxy-scale strong gravitational lenses, SPT0418-47 and SPT2147-50, using JWST NIRCam imaging across multiple filters. To account for angular complexity in the lens mass distribution, we introduce multipole perturbations with orders $m=1, 3, 4$. Our results show strong evidence for angular mass complexity in SPT2147, with multipole strengths of 0.3-1.7 $\%$ for $m=3, 4$ and 2.4-9.5 $\%$ for $m=1$, while SPT0418 shows no such preference. We also test lens models that include a dark matter substructure, finding a strong preference for a substructure in SPT2147-50 with a Bayes factor (log-evidence change) of $\sim 60$ when multipoles are not included. Including multipoles reduces the Bayes factor to $\sim 11$, still corresponding to a $5\sigma$ detection of a subhalo with an NFW mass of $\log_{10}(M_{200}/M_{\odot}) = 10.87\substack{+0.53\\ -0.71}$. While SPT2147-50 may represent the fourth detection of a dark matter substructure in a strong lens, further analysis is needed to confirm that the signal is not due to systematics associated with the lens mass model., Comment: 16 pages, 11 figures, submitted to MNRAS
- Published
- 2024
33. Combining Observational Data and Language for Species Range Estimation
- Author
-
Hamilton, Max, Lange, Christian, Cole, Elijah, Shepard, Alexander, Heinrich, Samuel, Mac Aodha, Oisin, Van Horn, Grant, and Maji, Subhransu
- Subjects
Computer Science - Databases ,Computer Science - Machine Learning - Abstract
Species range maps (SRMs) are essential tools for research and policy-making in ecology, conservation, and environmental management. However, traditional SRMs rely on the availability of environmental covariates and high-quality species location observation data, both of which can be challenging to obtain due to geographic inaccessibility and resource constraints. We propose a novel approach combining millions of citizen science species observations with textual descriptions from Wikipedia, covering habitat preferences and range descriptions for tens of thousands of species. Our framework maps locations, species, and text descriptions into a common space, facilitating the learning of rich spatial covariates at a global scale and enabling zero-shot range estimation from textual descriptions. Evaluated on held-out species, our zero-shot SRMs significantly outperform baselines and match the performance of SRMs obtained using tens of observations. Our approach also acts as a strong prior when combined with observational data, resulting in more accurate range estimation with less data. We present extensive quantitative and qualitative analyses of the learned representations in the context of range estimation and other spatial tasks, demonstrating the effectiveness of our approach., Comment: NeurIPS 2024
- Published
- 2024
34. Conditional Motional Squeezing of an Optomechanical Oscillator Approaching the Quantum Regime
- Author
-
Lane, Benjamin B., Chen, Junxin, Pagano, Ronald E., Aronson, Scott, Cole, Garrett D., Yin, Xinghui, Corbitt, Thomas R., and Mavalvala, Nergis
- Subjects
Quantum Physics - Abstract
Squeezed mechanical states are a valuable tool for quantum sensing and error correction in quantum computing, and a pivotal platform for tests of fundamental physics. Recently, solid state mechanical oscillators have been prepared in squeezed states using parametric interactions in both the microwave and optical regimes. It has long been predicted that a fast measurement rate comparable to the mechanical resonance frequency can prepare the oscillator under measurement into a quantum squeezed state. Despite decades of effort, this straightforward protocol is yet to be demonstrated in the quantum regime. Here, we use post-processing techniques to demonstrate preparation of a 50 ng GaAs cantilever in a conditional classical squeezed state with a minimum uncertainty (0.28 plus/minus 0.18) dB above (1.07 plus/minus 0.04 times) the zero point fluctuations, 3 orders of magnitude closer to the quantum regime in variance than the previous record. This paves the way to real-time measurement-based preparation of macroscopic oscillators in quantum squeezed states, and can be adapted to mechanical systems as large as the kg-scale test masses of the Laser Interferometer Gravitational-Wave Observatory (LIGO).
- Published
- 2024
35. Exploring the interaction between the MW and LMC with a large sample of blue horizontal branch stars from the DESI survey
- Author
-
Byström, Amanda, Koposov, Sergey E., Lilleengen, Sophia, Li, Ting S., Bell, Eric, Silva, Leandro Beraldo e, Carrillo, Andreia, Chandra, Vedant, Gnedin, Oleg Y., Han, Jiwon Jesse, Medina, Gustavo E., Najita, Joan, Riley, Alexander H., Thomas, Guillaume, Valluri, Monica, Aguilar, Jessica N., Ahlen, Steven, Prieto, Carlos Allende, Brooks, David, Claybaugh, Todd, Cole, Shaun, Dawson, Kyle, de la Macorra, Axel, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Kremin, Anthony, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Levi, Michael E., Meisner, Aaron, Miquel, Ramon, Moustakas, John, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin A., and Zou, Hu
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The Large Magellanic Cloud (LMC) is a Milky Way (MW) satellite that is massive enough to gravitationally attract the MW disc and inner halo, causing significant motion of the inner MW with respect to the outer halo. In this work, we probe this interaction by constructing a sample of 9,866 blue horizontal branch (BHB) stars with radial velocities from the DESI spectroscopic survey out to 120 kpc from the Galactic centre. This is the largest spectroscopic set of BHB stars in the literature to date, and it contains four times more stars with Galactocentric distances beyond 50 kpc than previous BHB catalogues. Using the DESI BHB sample combined with SDSS BHBs, we measure the bulk radial velocity of stars in the outer halo and observe that the velocity in the Southern Galactic hemisphere is different by 3.7$\sigma$ from the North. Modelling the projected velocity field shows that its dipole component is directed at a point 22 degrees away from the LMC along its orbit, which we interpret as the travel direction of the inner MW. The velocity field includes a monopole term that is -24 km/s, which we refer to as compression velocity. This velocity is significantly larger than predicted by the current models of the MW and LMC interaction. This work uses DESI data from its first two years of observations, but we expect that with upcoming DESI data releases, the sample of BHB stars will increase and our ability to measure the MW-LMC interaction will improve significantly., Comment: 22 pages, 19 figures. Submitted to MNRAS
- Published
- 2024
36. A Candidate High-Velocity Exoplanet System in the Galactic Bulge
- Author
-
Terry, Sean K., Beaulieu, Jean-Philippe, Bennett, David P., Bhattacharya, Aparna, Hulberg, Jon, Huston, Macy J., Koshimoto, Naoki, Blackman, Joshua W., Bond, Ian A., Cole, Andrew A., Lu, Jessica R., Ranc, Clément, Rektsini, Natalia E., and Vandorou, Aikaterini
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics - Abstract
We present an analysis of adaptive optics (AO) images from the Keck-I telescope of the microlensing event MOA-2011-BLG-262. The original discovery paper by Bennett et al. 2014 reports two distinct possibilities for the lens system; a nearby gas giant lens with an exomoon companion or a very low mass star with a planetary companion in the galactic bulge. The $\sim$10 year baseline between the microlensing event and the Keck follow-up observations allows us to detect the faint candidate lens host (star) at $K = 22.3$ mag and confirm the distant lens system interpretation. The combination of the host star brightness and light curve parameters yields host star and planet masses of $M_{\rm host} = 0.19 \pm 0.03M_{\odot}$ and $m_p = 28.92 \pm 4.75M_{\oplus}$ at a distance of $D_L = 7.49 \pm 0.91\,$kpc. We perform a multi-epoch cross reference to \textit{Gaia} DR3 and measure a transverse velocity for the candidate lens system of $v_L = 541.31 \pm 65.75$ km s$^{-1}$. We conclude this event consists of the highest velocity exoplanet system detected to date, and also the lowest mass microlensing host star with a confirmed mass measurement. The high-velocity nature of the lens system can be definitively confirmed with an additional epoch of high-resolution imaging at any time now. The methods outlined in this work demonstrate that the \textit{Roman} Galactic Exoplanet Survey (RGES) will be able to securely measure low-mass host stars in the bulge., Comment: 21 pages, 6 figures, 4 tables, submitted to AJ
- Published
- 2024
37. Electronic Structure at the Perovskite Rubrene Interface: The Effect of Surface Termination
- Author
-
Sloane, Nicholas P., Bailey, Christopher G., Cole, Jared H., Schmidt, Timothy W., McCamey, Dane R., and Klymenko, Mykhailo V.
- Subjects
Condensed Matter - Materials Science - Abstract
Perovskite films have rapidly emerged as leading active materials in optoelectronic devices due to their strong optical absorption, high carrier mobility and ease of fabrication. Whilst proving to be promising materials for solar cells and light-emitting diodes, another application of perovskites which makes effective use of their unique properties is sensitisation for photon upconversion. Consisting of a bulk perovskite sensitiser alongside an adjacent organic semiconductor film, the upconverting system can absorb multiple low-energy photons to emit high-energy photons. In this work, density functional theory, in conjunction with GW theory, is utilised to investigate the electronic structure at the MAPbI$_3$/rubrene interface for different surface terminations of MAPbI$_3$. From this investigation, we reveal that the surface termination of the perovskite layer greatly affects the charge density at the interface and within the rubrene layer driven by the formation of interfacial dipole layers. The formation of a strong interfacial dipole for the lead-iodide terminated perovskite alters the band alignment of the heterojunction and is expected to facilitate more efficient hole transfer. For the perovskite surface terminated with the methylammonium iodide layer, the highest occupied molecular orbital of the adjacent rubrene layer lies deep within the perovskite band gap. This termination type is further characterized by a lower density of states near the band edges thereby acting as a spacer which is anticipated to decrease the probability of charge transfer across the interface. Thus based on our results, PbI$_2$-terminated perovskite surfaces are predicted to be favourable for applications where hole transfer to a rubrene layer is ideal, highlighting the significance of surface termination for all systems where the electronic environment at the interface is crucial to performance.
- Published
- 2024
38. An Accessible Planar Ion Trap for Experiential Learning in Quantum Technologies
- Author
-
Thomas, Robert E., Wolfram, Cole E., Warren, Noah B., Fouch, Isaac J., Blinov, Boris B., and Parsons, Maxwell F.
- Subjects
Quantum Physics ,Physics - Physics Education - Abstract
We describe an inexpensive and accessible instructional setup which explores ion trapping with a planar linear ion trap. The planar trap is constructed using standard printed circuit board manufacturing and is designed to trap macroscopic charged particles in air. Trapping, shuttling, and splitting is demonstrated to students using these particles, visible to the naked eye. Students have control over trap voltages and can compare properties of particle motion to an analytic model of the trap using a computer vision program for particle tracking. Learning outcomes include understanding the design considerations for planar RF traps, mechanisms underpinning ion ejection, the physics of micromotion, and methods of data analysis using standard computer vision libraries., Comment: 22 pages, 5 figures
- Published
- 2024
39. The fixed probe storage ring magnetometer for the Muon g-2 experiment at Fermi National Accelerator Laboratory
- Author
-
Swanson, Erik, Fertl, Martin, Garcia, Alejandro, Helling, Cole, Ortez, Ronaldo, Osofsky, Rachel, Peterson, David A., Reimann, Rene, Smith, Matthias W., and Van Wechel, Tim D.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The goal of the FNAL E989 experiment is to measure the muon magnetic anomaly to unprecedented accuracy and precision at the Fermi National Accelerator Laboratory. To meet this goal, the time and space averaged magnetic environment in the muon storage volume must be known to better than 70 ppb. A new pulsed proton nuclear magnetic resonance (NMR) magnetometer was designed and built at the University of Washington, Seattle to track the temporal stability of the 1.45T magnetic field in the muon storage ring at this precision. It consists of an array of 378 petroleum jelly based NMR probes that are embedded in the walls of muon storage ring vacuum chambers and custom electronics built with readily available modular radio frequency (RF) components. We give NMR probe construction details and describe the functions of the custom electronic subsystems. The excellent performance metrics of the magnetometer are discussed where after 8 years of operation, the median single shot resolution of the array of probes remains at 11 ppb., Comment: 19 pages, 20 figures
- Published
- 2024
40. High-redshift LBG selection from broadband and wide photometric surveys using a Random Forest algorithm
- Author
-
Payerne, C., Doumerg, W. d'Assignies, Yèche, C., Ruhlmann-Kleider, V., Raichoor, A., Lang, D., Aguilar, J. N., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Dey, B., Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Juneau, S., Lambert, A., Landriau, M., Guillou, L. Le, Levi, M. E., Magneville, C., Manera, M., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W., Prada, F., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sprayberry, D., Tarlé, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In this paper, we investigate the possibility of selecting high-redshift Lyman-Break Galaxies (LBG) using current and future broadband wide photometric surveys, such as UNIONS or the Vera C. Rubin LSST, using a Random Forest algorithm. This work is conducted in the context of future large-scale structure spectroscopic surveys like DESI-II, the next phase of the Dark Energy Spectroscopic Instrument (DESI), which will start around 2029. We use deep imaging data from HSC and CLAUDS on the COSMOS and XMM-LSS fields. To predict the selection performance of LBGs with image quality similar to UNIONS, we degrade the $u, g, r, i$ and $z$ bands to UNIONS depth. The Random Forest algorithm is trained with the $u,g,r,i$ and $z$ bands to classify LBGs in the $2.5 < z < 3.5$ range. We find that fixing a target density budget of $1,100$ deg$^{-2}$, the Random Forest approach gives a density of $z>2$ targets of $873$ deg$^{-2}$, and a density of $493$ deg$^{-2}$ of confirmed LBGs after spectroscopic confirmation with DESI. This UNIONS-like selection was tested in a dedicated spectroscopic observation campaign of 1,000 targets with DESI on the COSMOS field, providing a safe spectroscopic sample with a mean redshift of 3. This sample is used to derive forecasts for DESI-II, assuming a sky coverage of 5,000 deg$^2$. We predict uncertainties on Alcock-Paczynski parameters $\alpha_\perp$ and $\alpha_{\parallel}$ to be 0.7$\%$ and 1$\%$ for $2.6
- Published
- 2024
41. DESI Emission Line Galaxies: Unveiling the Diversity of [OII] Profiles and its Links to Star Formation and Morphology
- Author
-
Lan, Ting-Wen, Prochaska, J. Xavier, Moustakas, John, Siudek, Małgorzata, Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., Dawson, K., de la Macorra, A., Doel, P., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Honscheid, K., Kehoe, R., Kisner, T., Lambert, A., Landriau, M., Meisner, A., Miquel, R., Muñoz-Gutiérrez, A., Newman, J. A., Poppett, C., Prada, F., Rossi, G., Sanchez, E., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We study the [OII] profiles of emission line galaxies (ELGs) from the Early Data Release of the Dark Energy Spectroscopic Instrument (DESI). To this end, we decompose and classify the shape of [OII] profiles with the first two eigenspectra derived from Principal Component Analysis. Our results show that DESI ELGs have diverse line profiles which can be categorized into three main types: (1) narrow lines with a median width of ~50 km/s, (2) broad lines with a median width of ~80 km/s, and (3) two-redshift systems with a median velocity separation of ~150 km/s, i.e., double-peak galaxies. To investigate the connections between the line profiles and galaxy properties, we utilize the information from the COSMOS dataset and compare the properties of ELGs, including star-formation rate (SFR) and galaxy morphology, with the average properties of reference star-forming galaxies with similar stellar mass, sizes, and redshifts. Our findings show that on average, DESI ELGs have higher SFR and more asymmetrical/disturbed morphology than the reference galaxies. Moreover, we uncover a relationship between the line profiles, the excess SFR and the excess asymmetry parameter, showing that DESI ELGs with broader [OII] line profiles have more disturbed morphology and higher SFR than the reference star-forming galaxies. Finally, we discuss possible physical mechanisms giving rise to the observed relationship and the implications of our findings on the galaxy clustering measurements, including the halo occupation distribution modeling of DESI ELGs and the observed excess velocity dispersion of the satellite ELGs., Comment: 24 pages, 13 figures, submitted to ApJ
- Published
- 2024
42. Effect of impurities and disorder on the braiding dynamics of Majorana zero modes
- Author
-
Peeters, Cole, Hodge, Themba, Mascot, Eric, and Rachel, Stephan
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Superconductivity - Abstract
Impurities and random disorder are known to affect topological superconducting phases and their Majorana zero modes (MZMs). In particular, it is a common assumption that disorder negatively influences the braiding dynamics of MZMs. Recently, it was shown, however, that random disorder can also stabilize or even increase topological phases. Here, we investigate quantitatively how a single impurity can lead to braiding errors. We show that the impurity increases, in most scenarios, the dynamical hybridization of the MZMs, reducing the braiding performance. In addition, we show how random disorder, i.e., impurities on all lattice sites but with different strengths, affects braiding. As for the static case, we observe a window of opportunity where random disorder decreases the average energy of a braid, and thus improves braiding outcomes. This window of opportunity is, however, limited due to an increase of diabatic effects in the presence of disorder. Nevertheless and contrary to physical intuition, disorder can in certain situations be beneficial and improve braiding outcomes., Comment: 9 pages, 9 figures
- Published
- 2024
43. Frequency Comb Calibrated Laser Heterodyne Radiometry for Precision Radial Velocity Measurements
- Author
-
Cole, Ryan K., Fredrick, Connor, Parts, Winter, Kingston, Max, Chinatti, Carolyn, Tusler, Josiah, Mahadevan, Suvrath, Terrien, Ryan, and Diddams, Scott A.
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Physics - Optics - Abstract
Disk-integrated observations of the Sun provide a unique vantage point to explore stellar activity and its effect on measured radial velocities. Here, we report a new approach for disk-integrated solar spectroscopy and evaluate its capabilities for solar radial velocity measurements. Our approach is based on a near-infrared laser heterodyne radiometer (LHR) combined with an optical frequency comb calibration, and we show that this combination enables precision, disk-integrated solar spectroscopy with high spectral resolution (~800,000), high signal-to-noise ratio (~2,600), and absolute frequency accuracy. We use the comb-calibrated LHR to record spectra of the solar Fe I 1565 nm transition over a six-week period. We show that our measurements reach sub-meter-per-second radial velocity precision over a single day, and we use daily measurements of the absolute line center to assess the long-term stability of the comb-calibrated LHR approach. We use this long-duration dataset to quantify the principal uncertainty sources that impact the measured radial velocities, and we discuss future modifications that can further improve this approach in studies of stellar variability and its impact on radial velocity measurements.
- Published
- 2024
44. MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion
- Author
-
Zhang, Junyi, Herrmann, Charles, Hur, Junhwa, Jampani, Varun, Darrell, Trevor, Cole, Forrester, Sun, Deqing, and Yang, Ming-Hsuan
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Estimating geometry from dynamic scenes, where objects move and deform over time, remains a core challenge in computer vision. Current approaches often rely on multi-stage pipelines or global optimizations that decompose the problem into subtasks, like depth and flow, leading to complex systems prone to errors. In this paper, we present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes. Our key insight is that by simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes. However, this approach presents a significant challenge: the scarcity of suitable training data, namely dynamic, posed videos with depth labels. Despite this, we show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics, even without an explicit motion representation. Based on this, we introduce new optimizations for several downstream video-specific tasks and demonstrate strong performance on video depth and camera pose estimation, outperforming prior work in terms of robustness and efficiency. Moreover, MonST3R shows promising results for primarily feed-forward 4D reconstruction., Comment: Project page: https://monst3r-project.github.io/
- Published
- 2024
45. Fully Automated CTC Detection, Segmentation and Classification for Multi-Channel IF Imaging
- Author
-
Schwab, Evan, Annaldas, Bharat, Ramesh, Nisha, Lundberg, Anna, Shelke, Vishal, Xu, Xinran, Gilbertson, Cole, Byun, Jiyun, and Lam, Ernest T.
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Quantitative Biology - Quantitative Methods - Abstract
Liquid biopsies (eg., blood draws) offer a less invasive and non-localized alternative to tissue biopsies for monitoring the progression of metastatic breast cancer (mBCa). Immunofluoresence (IF) microscopy is a tool to image and analyze millions of blood cells in a patient sample. By detecting and genetically sequencing circulating tumor cells (CTCs) in the blood, personalized treatment plans are achievable for various cancer subtypes. However, CTCs are rare (about 1 in 2M), making manual CTC detection very difficult. In addition, clinicians rely on quantitative cellular biomarkers to manually classify CTCs. This requires prior tasks of cell detection, segmentation and feature extraction. To assist clinicians, we have developed a fully automated machine learning-based production-level pipeline to efficiently detect, segment and classify CTCs in multi-channel IF images. We achieve over 99% sensitivity and 97% specificity on 9,533 cells from 15 mBCa patients. Our pipeline has been successfully deployed on real mBCa patients, reducing a patient average of 14M detected cells to only 335 CTC candidates for manual review., Comment: Published in MICCAI 2024 MOVI Workshop Conference Proceedings
- Published
- 2024
46. OmniGenBench: Automating Large-scale in-silico Benchmarking for Genomic Foundation Models
- Author
-
Yang, Heng, Cole, Jack, and Li, Ke
- Subjects
Quantitative Biology - Genomics ,Computer Science - Computation and Language - Abstract
The advancements in artificial intelligence in recent years, such as Large Language Models (LLMs), have fueled expectations for breakthroughs in genomic foundation models (GFMs). The code of nature, hidden in diverse genomes since the very beginning of life's evolution, holds immense potential for impacting humans and ecosystems through genome modeling. Recent breakthroughs in GFMs, such as Evo, have attracted significant investment and attention to genomic modeling, as they address long-standing challenges and transform in-silico genomic studies into automated, reliable, and efficient paradigms. In the context of this flourishing era of consecutive technological revolutions in genomics, GFM studies face two major challenges: the lack of GFM benchmarking tools and the absence of open-source software for diverse genomics. These challenges hinder the rapid evolution of GFMs and their wide application in tasks such as understanding and synthesizing genomes, problems that have persisted for decades. To address these challenges, we introduce GFMBench, a framework dedicated to GFM-oriented benchmarking. GFMBench standardizes benchmark suites and automates benchmarking for a wide range of open-source GFMs. It integrates millions of genomic sequences across hundreds of genomic tasks from four large-scale benchmarks, democratizing GFMs for a wide range of in-silico genomic applications. Additionally, GFMBench is released as open-source software, offering user-friendly interfaces and diverse tutorials, applicable for AutoBench and complex tasks like RNA design and structure prediction. To facilitate further advancements in genome modeling, we have launched a public leaderboard showcasing the benchmark performance derived from AutoBench. GFMBench represents a step toward standardizing GFM benchmarking and democratizing GFM applications., Comment: https://github.com/yangheng95/OmniGenomeBench
- Published
- 2024
47. iTeach: Interactive Teaching for Robot Perception using Mixed Reality
- Author
-
P, Jishnu Jaykumar, Salvato, Cole, Bomnale, Vinaya, Wang, Jikai, and Xiang, Yu
- Subjects
Computer Science - Robotics - Abstract
We introduce iTeach, a Mixed Reality (MR) framework to improve robot perception through real-time interactive teaching. By allowing human instructors to dynamically label robot RGB data, iTeach improves both the accuracy and adaptability of robot perception to new scenarios. The framework supports on-the-fly data collection and labeling, enhancing model performance, and generalization. Applied to door and handle detection for household tasks, iTeach integrates a HoloLens app with an interactive YOLO model. Furthermore, we introduce the IRVLUTD DoorHandle dataset. DH-YOLO, our efficient detection model, significantly enhances the accuracy and efficiency of door and handle detection, highlighting the potential of MR to make robotic systems more capable and adaptive in real-world environments. The project page is available at https://irvlutd.github.io/iTeach.
- Published
- 2024
48. Brightness of the Qianfan Satellites
- Author
-
Mallama, Anthony, Cole, Richard E., Dorreman, Bram, Harrington, Scott, and James, Nick
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Observed magnitudes of Qianfan spacecraft range from 4 when they are near zenith to 8 when low in the sky. Nearly all of the observations can be modeled with a nadir-facing flat antenna panel and the underside of a zenith-facing solar array, both with Lambertian reflectance properties. These satellites will impact astronomical research unless their brightness is reduced.
- Published
- 2024
49. Value Added Catalog of physical properties of more than 1.3 million galaxies from the DESI Survey
- Author
-
Siudek, M., Pucha, R., Mezcua, M., Juneau, S., Aguilar, J., Ahlen, S., Brooks, D., Circosta, C., Claybaugh, T., Cole, S., Dawson, K., de la Macorra, A., Dey, Arjun, Dey, Biprateep, Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Howlett, C., Ishak, M., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Lambert, A., Landriau, M., Guillou, L. Le, Manera, M., Martini, P., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Niz, G., Pan, Z., Percival, W. J., Poppett, C., Prada, F., Rossi, G., Saintonge, A., Sanchez, E., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Speranza, F., Sprayberry, D., Tarle, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Aims. We present an extensive catalog of the physical properties of more than a million galaxies within the Dark Energy Spectroscopic Instrument (DESI), one of the largest spectroscopic surveys to date. Spanning over a full variety of target types, including emission line galaxies and luminous red galaxies as well as quasars, our survey encompasses an unprecedented range of spectroscopic redshifts, stretching from 0 to 6. Methods. The physical properties, such as stellar masses and star formation rates, are derived via the CIGALE spectral energy distribution (SED) fitting code accounting for the contribution coming from active galactic nuclei (AGN). Based on the modeling of the optical-mid-infrared (grz complemented by WISE photometry) SEDs, we study galaxy properties with respect to their location on the main sequence. Results. We revise the dependence of stellar mass estimates on model choices and availability of the WISE photometry. The WISE information is mandatory to minimize the misclassification of star-forming galaxies as AGN. The lack of WISE bands in SED fits leads to elevated AGN fractions for 68% of star-forming galaxies identified using emission line diagnostic diagram but does not significantly affect their stellar mass nor star formation estimates., Comment: resubmitted after addressing minor referee comments
- Published
- 2024
- Full Text
- View/download PDF
50. First Measurement of Near- and Sub-Threshold $J/\psi$ Photoproduction off Nuclei
- Author
-
Pybus, J. R., Ehinger, L., Kolar, T., Devkota, B., Sharp, P., Yu, B., Dalton, M. M., Dutta, D., Gao, H., Hen, O., Piasetzky, E., Santiesteban, S. N., Schmidt, A., Somov, A., Szumila-Vance, H., Adhikari, S., Asaturyan, A., Austregesilo, A., Gayoso, C. Ayerbe, Barlow, J., Berdnikov, V. V., Bhatt, H. D., Bhetuwal, Deepak, Black, T., Briscoe, W. J., Chung, G., Cole, P. L., Deur, A., Dotel, R., Egiyan, H., Eugenio, P., Fanelli, C., Gan, L., Gasparian, A., Guo, J., Hernandez, K., Higinbotham, D. W., Hurck, P., Jaegle, I., Jones, R. T., Kakoyan, V., Karki, A., Li, H., Li, W. B., Linera, G. R., Lyubovitskij, V., Marukyan, H., McCaughan, M. D., McCracken, M., Mizutani, K., Nguyen, D., Oresic, S., Ostrovidov, A. I., Papandreou, Z., Paudel, C., Peters, K., Ritman, J., Schick, A., Schwiening, J., Smith, A., Somov, S., Strakovsky, I., Suresh, K., Tarasov, V. V., Taylor, S., Xiao, T., Zhang, Z., and Zhou, X.
- Subjects
Nuclear Experiment - Abstract
We report on the first measurement of $J/\psi$ photoproduction from nuclei in the photon energy range of $7$ to $10.8$ GeV, extending above and below the photoproduction threshold in the free proton of $\sim8.2$ GeV. The experiment used a tagged photon beam incident on deuterium, helium, and carbon, and the GlueX detector at Jefferson Lab to measure the semi-inclusive $A(\gamma,e^+e^-p)$ reaction with a dilepton invariant mass $M(e^+e^-)\sim m_{J/\psi}=3.1$ GeV. The incoherent $J/\psi$ photoproduction cross sections in the measured nuclei are extracted as a function of the incident photon energy, momentum transfer, and proton reconstructed missing light-cone momentum fraction. Comparisons with theoretical predictions assuming a dipole form factor allow extracting a gluonic radius for bound protons of $\sqrt{\langle r^2\rangle}=0.85\pm0.14$ fm. The data also suggest an excess of the measured cross section for sub-threshold production and for interactions with high missing light-cone momentum fraction protons. The measured enhancement can be explained by modified gluon structure for high-virtuality bound-protons.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.