Because the alpha proton X ray spectrometer (APXS) sensor head on the Mars Pathfinder rover, Sojourner, is placed on Martian soil by the deployment mechanism (ADM), the rover would be crippled if the actuator fails when the mechanism is in its deployed position, as rover ground clearance is then reduced to zero. This paper describes the unique fail-safe mounted on the ADM, especially the use of a low-temperature-melting alloy as a coupler device. The final form of the design is a low-melting-point metal pellet coupler, made from Cerrobend, in parallel with a Negator spring pack. In its solid state, the metal rigidly connects the driver (the actuator) and the driven part (the mechanism). When commanded, a strip heater wrapped around the coupler melts the metal pellet (at 60(deg)C), allowing the driven part to turn independent of the driver. The Negator spring retracts the mechanism to its fully stowed position. This concept meets all the design criteria, and provides an added benefit. When the metal hardens the coupler once again rigidly connects the actuator and the mechanism. The concept presented here can easily be applied to other applications. Anywhere release devices are needed, low-melting-point couplers can be considered. The issues to be concerned with are thermal isolation, proper setting of the parts before actuation, and possible outgassing concerns. However, when these issues are overcome, the resulting release mechanism can promise to be the most light, simple, power conserving alternative available.