1. Tracking and Decoding Rydberg Leakage Error with MBQC
- Author
-
Yu, Cheng-Cheng, Chen, Zi-Han, Deng, Yu-Hao, Chen, Ming-Cheng, Lu, Chao-Yang, and Pan, Jian-Wei
- Subjects
Quantum Physics - Abstract
Neutral atom array has emerged as a promising platform for quantum computation owing to its high-fidelity two-qubit gate, arbitrary connectivity and overwhelming scalability. Nevertheless, fault-tolerant quantum computing on the neutral atom platform requires consideration of the types of errors that neutral atoms are prone to. One typical and major error is leakage error from Rydberg state when implementing multi-qubit gate. Such leakage error is harmful by propagating multiple pauli errors in quantum circuit. Researchers have proposed erasure conversion protocol, which utilizes fast leakage detection to convert leakage error to benign erasure error. This method has a favorable error distance d, but is limited to certain atom species. Here, we propose a new method to deal with such leakage error in measurement-based quantum computation (MBQC), to which we refer as "Leakage Tracking". We remove the demand for mid-circuit leakage detection but infer the probabilities and locations of pauli errors through gate sequence and final leakage detection. We show that this method has an error distance de = d and reaches a high threshold 1.7% per CZ gate for pure leakage error and perfect final leakage detection. In presence of atom loss and other pauli errors, we show the advantage in error distance over erasure conversion when the ratio of leakage error is close to one., Comment: 11 pages, 5 figures
- Published
- 2024