Full-scale simulations of a Gulfstream G-III aircraft, performed in support of the NASA Acoustic Research Measurements flights, are presented to complement results discussed in earlier studies. The flow solver employed in those studies, Dassault Systèmes’ lattice Boltzmann PowerFLOW®, was also used during this investigation to conduct time-dependent simulations of the entire aircraft in landing configuration with a fully dressed landing gear. The high-fidelity simulations, performed at a Mach number of 0.23 and a Reynolds number of 10.5 × 106 based on mean aerodynamic chord, captured all relevant airframe noise sources. The computations were used to assess the aeroacoustic performance of the main landing gear, with and without noise reduction fairings installed, of a G-III aircraft equipped with Adaptive Compliant Trailing Edge technology and conventional Fowler flaps. To facilitate comparison of predicted noise signatures with effective perceived noise levels obtained from flight test measurements, the “as-flown” nose landing gear geometry, missing in our earlier studies, was added to the simulated G-III aircraft configurations. The high fidelity, synthetic data were post-processed using a Ffowcs-Williams and Hawkings integral approach to estimate farfield acoustic behavior, with pressures on the model solid surface or pressure and velocity components on a permeable surface enveloping the acoustic near field used as input.