1. Effects of Co substitution on the structural and magnetic properties of Sr(Ni$_{1-x}$Co$_x$)$_2$P$_2$
- Author
-
Schmidt, Juan, Gorgen-Lesseux, Guilherme, Ribeiro, Raquel A., Bud'ko, Sergey L., and Canfield, Paul C.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science - Abstract
Although SrNi$_2$P$_2$ adopts the common ThCr$_2$Si$_2$ structure for $T\geq 325$ K, being in an uncollapsed tetragonal state, on cooling below 325 K it adopts a one-third collapsed orthorhombic phase where one out of every three P rows bond across the Sr layers. On the other hand, SrCo$_2$P$_2$ only exhibits the uncollapsed ThCr$_2$Si$_2$ structure from room temperature down to 1.8 K. Neither SrNi$_2$P$_2$ nor SrCo$_2$P$_2$ manifests magnetic transitions down to 50 mK and 2 K, respectively. In this work we report the effects of Co substitution in Sr(Ni$_{1-x}$Co$_x$)$_2$P$_2$, which allows for tuning the transition between the one-third collapsed and the uncollapsed structure. We find a rapid decrease of the one-third collapsed structural transition temperature with increasing Co fraction, until reaching full suppression for $x \geq 0.1$. Substitution levels in the range $0.11\leq x\leq 0.58$ show no signs of any transition down to 1.8 K in the magnetization or resistance measurements in the range $1.8\ \text{K}\leq T\leq 300\ \text{K}$. However, different magnetically ordered states emerge for $x\geq 0.65$, and disappear for $x\geq 0.99$, recovering the known paramagnetic properties of the parent compound SrCo$_2$P$_2$. These results are summarized in a phase diagram, built upon the characterization done on single crystals with different Co fraction. Both the magnetic and structural properties are compared to other systems with ThCr$_2$Si$_2$ structure that exhibit magnetic ordering and collapsed tetragonal transitions. The magnetic ordering and moment formation are well described by Takahashi's spin fluctuation theory of itinerant electron magnetism., Comment: 17 pages, 20 figures
- Published
- 2023