1. Revealing Potential Initial Mass Function variations with metallicity: JWST observations of young open clusters in a low-metallicity environment
- Author
-
Yasui, Chikako, Izumi, Natsuko, Saito, Masao, Lau, Ryan M., Kobayashi, Naoto, and Ressler, Michael E.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present the substellar mass function of star-forming clusters ($\simeq$0.1 Myr old) in a low-metallicity environment ($\simeq$$-$0.7 dex). We performed deep JWST/NIRCam and MIRI imaging of two star-forming clusters in Digel Cloud 2, a star-forming region in the Outer Galaxy ($R_G \gtrsim 15$ kpc). The very high sensitivity and spatial resolution of JWST enable us to resolve cluster members clearly down to a mass detection limit of 0.02 $M_\odot$, enabling the first detection of brown dwarfs in low-metallicity clusters. Fifty-two and ninety-one sources were extracted in mass-$A_V$-limited samples in the two clusters, from which Initial mass functions (IMFs) were derived by model-fitting the F200W band luminosity function, resulting in IMF peak masses (hereafter $M_C$) $\log M_C / M_\odot \simeq -1.5 \pm 0.5$ for both clusters. Although the uncertainties are rather large, the obtained $M_C$ values are lower than those in any previous study ($\log M_C / M_\odot \sim -0.5$). Comparison with the local open clusters with similar ages to the target clusters ($\sim$$10^6$-$10^7$ yr) suggests a metallicity dependence of $M_C$, with lower $M_C$ at lower metallicities, while the comparison with globular clusters, similarly low metallicities but considerably older ($\sim$$10^{10}$ yr), suggests that the target clusters have not yet experienced significant dynamical evolution and remain in their initial physical condition. The lower $M_C$ is also consistent with the theoretical expectation of the lower Jeans mass due to the higher gas density under such low metallicity. The $M_C$ values derived from observations in such an environment would place significant constraints on the understanding of star formation., Comment: Accepted for publication in ApJ
- Published
- 2024