1. Oxygen dissociation on the C3N monolayer: A first-principles study
- Author
-
Zhao, Liang, Luo, Wenjin, Huang, Zhijing, Yan, Zihan, Jia, Hui, Pei, Wei, and Tu, Yusong
- Subjects
Condensed Matter - Materials Science - Abstract
The oxygen dissociation and the oxidized structure on the pristine C3N monolayer in exposure to air are the inevitably critical issues for the C3N engineering and surface functionalization yet have not been revealed in detail. Using the first-principles calculations, we have systematically investigated the possible O2 adsorption sites, various O2 dissociation pathways and the oxidized structures. It is demonstrated that the pristine C3N monolayer shows more O2 physisorption sites and exhibits stronger O2 adsorption than the pristine graphene. Among various dissociation pathways, the most preferable one is a two-step process involving an intermediate state with the chemisorbed O2 and the barrier is lower than that on the pristine graphene, indicating that the pristine C3N monolayer is more susceptible to oxidation than the pristine graphene. Furthermore, we found that the most stable oxidized structure is not produced by the most preferable dissociation pathway but generated from a direct dissociation process. These results can be generalized into a wide range of temperatures and pressures using ab initio atomistic thermodynamics. Our findings deepen the understanding of the chemical stability of 2D crystalline carbon nitrides under ambient conditions, and could provide insights into the tailoring of the surface chemical structures via doping and oxidation., Comment: 23 pages,8 figures
- Published
- 2022
- Full Text
- View/download PDF