1. Quantum sensing of magnetic fields with molecular color centers
- Author
-
Mullin, Kathleen R., Laorenza, Daniel W., Freedman, Danna E., and Rondinelli, James M.
- Subjects
Condensed Matter - Materials Science ,Quantum Physics - Abstract
Molecular color centers, such as $S=1$ Cr($o$-tolyl)$_{4}$, show promise as an adaptable platform for magnetic quantum sensing. Their intrinsically small size, i.e., 1-2 nm, enables them to sense fields at short distances and in various geometries. This feature, in conjunction with tunable optical read-out of spin information, offers the potential for molecular color centers to be a paradigm shifting materials class beyond diamond-NV centers by accessing a distance scale opaque to NVs. This capability could, for example, address ambiguity in the reported magnetic fields arising from two-dimensional magnets by allowing for a single sensing technique to be used over a wider range of distances. Yet, so far, these abilities have only been hypothesized with theoretical validation absent. We show through simulation that Cr($o$-tolyl)$_{4}$ can spatially resolve proximity-exchange versus direct magnetic field effects from monolayer CrI$_{3}$ by quantifying how these interactions impact the excited states of the molecule. At short distances, proximity exchange dominates through molecule-substrate interactions, but at further distances the molecule behaves as a typical magnetic sensor, with magnetostatic effects dominating changes to the energy of the excited state. Our models effectively demonstrate how a molecular color center could be used to measure the magnetic field of a 2D magnet and the role different distance-dependent interactions contribute to the measured field., Comment: 7 pages, 4 figures
- Published
- 2023
- Full Text
- View/download PDF