1. A Demonstration of Adaptive Collaboration of Large Language Models for Medical Decision-Making
- Author
-
Kim, Yubin, Park, Chanwoo, Jeong, Hyewon, Grau-Vilchez, Cristina, Chan, Yik Siu, Xu, Xuhai, McDuff, Daniel, Lee, Hyeonhoon, Breazeal, Cynthia, and Park, Hae Won
- Subjects
Computer Science - Computation and Language - Abstract
Medical Decision-Making (MDM) is a multi-faceted process that requires clinicians to assess complex multi-modal patient data patient, often collaboratively. Large Language Models (LLMs) promise to streamline this process by synthesizing vast medical knowledge and multi-modal health data. However, single-agent are often ill-suited for nuanced medical contexts requiring adaptable, collaborative problem-solving. Our MDAgents addresses this need by dynamically assigning collaboration structures to LLMs based on task complexity, mimicking real-world clinical collaboration and decision-making. This framework improves diagnostic accuracy and supports adaptive responses in complex, real-world medical scenarios, making it a valuable tool for clinicians in various healthcare settings, and at the same time, being more efficient in terms of computing cost than static multi-agent decision making methods., Comment: Under Review for ML4H 2024
- Published
- 2024