1. The Development of a Chemical Kinetic Mechanism for Combustion in Supercritical Carbon Dioxide
- Author
-
Harman-Thomas, James M., Hughes, Kevin J., and Pourkashanian, Mohamed
- Subjects
Physics - Chemical Physics - Abstract
Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions., Comment: 26 pages, 9 figures
- Published
- 2022