1. surviveR: a flexible shiny application for patient survival analysis.
- Author
-
Sessler, Tamas, Quinn, Gerard P., Wappett, Mark, Rogan, Emily, Sharkey, David, Ahmaderaghi, Baharak, Lawler, Mark, Longley, Daniel B., and McDade, Simon S.
- Subjects
- *
OVERALL survival , *GENE expression , *COMMERCIAL statistics , *LOG-rank test , *WEB-based user interfaces , *SURVIVAL analysis (Biometry) - Abstract
Kaplan–Meier (KM) survival analyses based on complex patient categorization due to the burgeoning volumes of genomic, molecular and phenotypic data, are an increasingly important aspect of the biomedical researcher's toolkit. Commercial statistics and graphing packages for such analyses are functionally limited, whereas open-source tools have a high barrier-to-entry in terms of understanding of methodologies and computational expertise. We developed surviveR to address this unmet need for a survival analysis tool that can enable users with limited computational expertise to conduct routine but complex analyses. surviveR is a cloud-based Shiny application, that addresses our identified unmet need for an easy-to-use web-based tool that can plot and analyse survival based datasets. Integrated customization options allows a user with limited computational expertise to easily filter patients to enable custom cohort generation, automatically calculate log-rank test and Cox hazard ratios. Continuous datasets can be integrated, such as RNA or protein expression measurements which can be then used as categories for survival plotting. We further demonstrate the utility through exemplifying its application to a clinically relevant colorectal cancer patient dataset. surviveR is a cloud-based web application available at https://generatr.qub.ac.uk/app/surviveR, that can be used by non-experts users to perform complex custom survival analysis. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF