1. Interactive Information Design
- Author
-
Frédéric Koessler, Marie Laclau, Tristan Tomala, Paris School of Economics (PSE), École des Ponts ParisTech (ENPC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Paris Jourdan Sciences Economiques (PJSE), Université Paris 1 Panthéon-Sorbonne (UP1)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École des hautes études en sciences sociales (EHESS)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Groupement de Recherche et d'Etudes en Gestion (GREGHEC ), Ecole des Hautes Etudes Commerciales (HEC Paris)-Centre National de la Recherche Scientifique (CNRS), Ecole des Hautes Etudes Commerciales (HEC Paris), ANR-17-EURE-0001,PGSE,Ecole d'Economie de Paris(2017), Groupement de Recherche et d'Etudes en Gestion à HEC (GREGH), ANR-19-CE26-0010,StratCom,Diffusion de l'information en présence de rationalité limitée et de canaux de transmission complexes(2019), ANR-11-IDEX-0003,IPS,Idex Paris-Saclay(2011), ANR-11-LABX-0047,ECODEC,Réguler l'économie au service de la société(2011), ANR-15-CE38-0007,CIGNE,Communication et Information dans des Jeux dans des Réseaux(2015), Théorie économique, modélisation et applications (THEMA), Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), HEC Research Paper Series, and Université Panthéon-Sorbonne (UP1)-École normale supérieure - Paris (ENS Paris)-Institut National de la Recherche Agronomique (INRA)-École des hautes études en sciences sociales (EHESS)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
TheoryofComputation_MISCELLANEOUS ,Computer Science::Computer Science and Game Theory ,Class (set theory) ,Computer science ,General Mathematics ,Bayesian persuasion ,Management Science and Operations Research ,Outcome (game theory) ,Subgame perfect equilibrium ,Strategy ,Information design ,0502 economics and business ,Converse ,statistical experiments ,050207 economics ,050205 econometrics ,Mathematics ,05 social sciences ,Normal-form game ,Sharing rules ,Pareto principle ,TheoryofComputation_GENERAL ,Statistical experiments ,[SHS.ECO]Humanities and Social Sciences/Economics and Finance ,Computer Science Applications ,Splitting games ,Bayes correlated equilibrium ,JEL: C - Mathematical and Quantitative Methods/C.C7 - Game Theory and Bargaining Theory/C.C7.C72 - Noncooperative Games ,[SHS.GESTION]Humanities and Social Sciences/Business administration ,050206 economic theory ,JEL: D - Microeconomics/D.D8 - Information, Knowledge, and Uncertainty/D.D8.D82 - Asymmetric and Private Information • Mechanism Design ,Mathematical economics - Abstract
We study the interaction between multiple information designers who try to influence the behavior of a set of agents. When the set of messages available to each designer is finite, such games always admit subgame perfect equilibria. When designers produce public information about independent pieces of information, every equilibrium of the direct game (in which the set of messages coincides with the set of states) is an equilibrium with larger (possibly infinite) message sets. The converse is true for a class of Markovian equilibria only. When designers produce information for their own corporation of agents, pure strategy equilibria exist and are characterized via an auxiliary normal form game. In an infinite-horizon multi-period extension of information design games, a feasible outcome which Pareto dominates a more informative equilibrium of the one-period game is supported by an equilibrium of the multi-period game.
- Published
- 2022