In recent years, the rapid growth of virtual space has made people devote more of their time in virtual space, especially to social networks, which can be attributed to the remarkable features of virtual space; including increasing the speed of information exchange, easy and free access to information and variety of knowledge topics. In this regard, the opinions recorded by users in virtual networks have grown day by day and have become very important, and extracting the opinions and feelings of users' opinions for more informed decision-making is of great help to businesses, on the other hand, virtual reality technology in the past few decades It has undergone technical changes and improved immersion and the feeling of remote presence; This technology is used in various fields such as education, tourism, health, sports, entertainment, architecture and construction, etc. The increasing progress of virtual reality technology has caused many businesses to operate in this field, but due to changes Continuous market and the need for timely information, companies should use differentiation and growth strategies, in this regard, they need to ask users' opinions and in line with that, try to grow and improve their business, considering that Users' comments are textual, and reading and summarizing them is time-consuming and difficult. Based on this, the aim of the current research was to categorize comments related to virtual reality technology using machine learning methods and a dictionary-based approach. Therefore, about one million tweets in the field of virtual reality technology were collected by the web crawler, and after data preprocessing, 480,432 samples remained in the data, then Dirichlet's hidden allocation topic modeling was implemented on the data. This modeling separated different topics by examining the distribution of words in tweets; The tweets whose distribution of words were similar were placed into a topic and the number of topics with the highest coherence score was selected, the number of topics 9 had higher coherence and the data were grouped into 9 topics, so once again the Dirichlet hidden allocation modeling was set to 9. The topic was done, with this the tweets were grouped into 9 different topics. To evaluate the model, considering that we had a probability distribution, the confusion criterion was used, the value of which was-9.44, and the coherence score was used for the degree of semantic similarity between words and the distinction between subjects, and the result was 0.47. The lower the confusion criterion and the higher the coherence score, the more efficient the model is. With the help of keyword weights obtained by Dirichlet hidden allocation modeling and examining at least 5 different tweets from each topic, 9 topics related to virtual reality technology were identified: "New Technology", "Creation and Make", "Technological Business", "Education", "Virtual Games", "Progress", "Gadget", "Metaverse", and "Indiegame", the topics were analyzed with the help of several graphs. We found that the number of neutral comments on topics such as "New Technology" and "Metaverse" is more than positive and negative comments, which indicates the lack of sufficient information or the lack of use of these technologies, and it is necessary for businesses in this field, to try more in this regard, in the same way, if we observe the graph of "Virtual Games" and "Technological Business", we can see that it changes almost with the same ratio in different years, in the sense that this The two graphs are related, in fact, businesses should keep in mind that the factors affecting these two issues are the same, but users pay more attention to the issue of "Virtual Games", as a result, if the creators of "Technological Business" Focus specifically on "Virtual Games", they will grow more due to the more attention of users, also the creators of games should consider that "Virtual Games" are a topic of more attention than "Indiegame". Is. In the subjects of "Education" and "Gadget", users lost their attention to these subjects in the field of virtual reality over time, in fact they showed their attention to other subjects, so it is better for businesses that operate in this field to take measures To advertise and attract users or change their user area if there is no growth. [ABSTRACT FROM AUTHOR]