1. 'A careful disorderliness' in biomolecular structure revealed by Raman optical activity.
- Author
-
Barron LD
- Subjects
- Optical Rotation, Glycoproteins, Protein Structure, Secondary, Spectrum Analysis, Raman methods, Peptides chemistry, Nucleic Acids
- Abstract
Following its first observation 50 years ago Raman optical activity (ROA), which refers to a circular polarization dependence of Raman scattering from chiral molecules, has evolved into a powerful chiroptical spectroscopy for studying a large range of biomolecules in aqueous solution. Among other things ROA provides information about motif and fold as well as secondary structure of proteins; structure of carbohydrates and nucleic acids; polypeptide and carbohydrate structure of intact glycoproteins; and protein and nucleic acid structure of intact viruses. Quantum chemical simulations of observed Raman optical activity spectra can provide complete three-dimensional structures of biomolecules, together with information about conformational dynamics. This article reviews how ROA has provided new insight into the structure of unfolded/disordered states and sequences, ranging from the complete disorder of the random coil to the more controlled type of disorder exemplified by poly L-proline II helix in proteins, high mannose glycan chains in glycoproteins and constrained dynamic states of nucleic acids. Possible roles for this 'careful disorderliness' in biomolecular function, misfunction and disease are discussed, especially amyloid fibril formation., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF