5 results on '"Buccino, D.R."'
Search Results
2. Juno spacecraft gravity measurements provide evidence for normal modes of Jupiter
- Author
-
Daniele Durante, Tristan Guillot, Luciano Iess, David J. Stevenson, Christopher R. Mankovich, Steve Markham, Eli Galanti, Yohai Kaspi, Marco Zannoni, Luis Gomez Casajus, Giacomo Lari, Marzia Parisi, Dustin R. Buccino, Ryan S. Park, Scott J. Bolton, Durante D., Guillot T., Iess L., Stevenson D.J., Mankovich C.R., Markham S., Galanti E., Kaspi Y., Zannoni M., Gomez Casajus L., Lari G., Parisi M., Buccino D.R., Park R.S., and Bolton S.J.
- Subjects
Orbit determination ,Juno ,Jupiter ,normal modes ,interior structure ,radioscience ,Multidisciplinary ,General Physics and Astronomy ,General Chemistry ,General Biochemistry, Genetics and Molecular Biology - Abstract
The Juno spacecraft has been collecting data to shed light on the planet’s origin and characterize its interior structure. The onboard gravity science experiment based on X-band and Ka-band dual-frequency Doppler tracking precisely measured Jupiter’s zonal gravitational field. Here, we analyze 22 Juno’s gravity passes to investigate the gravity field. Our analysis provides evidence of new gravity field features, which perturb its otherwise axially symmetric structure with a time-variable component. We show that normal modes of the planet could explain the anomalous signatures present in the Doppler data better than other alternative explanations, such as localized density anomalies and non-axisymmetric components of the static gravity field. We explain Juno data by p-modes having an amplitude spectrum with a peak radial velocity of 10–50 cm/s at 900–1200 μHz (compatible with ground-based observations) and provide upper bounds on lower frequency f-modes (radial velocity smaller than 1 cm/s). The new Juno results could open the possibility of exploring the interior structure of the gas giants through measurements of the time-variable gravity or with onboard instrumentation devoted to the observation of normal modes, which could drive spacecraft operations of future missions.
- Published
- 2022
- Full Text
- View/download PDF
3. Gravity Field of Ganymede After the Juno Extended Mission
- Author
-
L. Gomez Casajus, A. I. Ermakov, M. Zannoni, J. T. Keane, D. Stevenson, D. R. Buccino, D. Durante, M. Parisi, R. S. Park, P. Tortora, S. J. Bolton, Gomez Casajus L., Ermakov A.I., Zannoni M., Keane J.T., Stevenson D., Buccino D.R., Durante D., Parisi M., Park R.S., Tortora P., and Bolton S.J.
- Subjects
Juno ,Juno mission ,Geophysics ,radioscience ,gravity field ,ganymede ,data analysis ,Galileo ,orbit determination ,Ganymede ,General Earth and Planetary Sciences ,interior ,gravity - Abstract
The Juno Extended Mission presented the first opportunity to acquire gravity measurements of Ganymede since the end of the Galileo mission. These new Juno data offered the chance to carry out a joint analysis with the Galileo data set, improving our knowledge of Ganymede's gravity field and shedding new light upon its interior structure. Through reconstruction of Juno's and Galileo's orbit during the Ganymede flybys, the gravity field of the moon was estimated. The results indicate that Ganymede's degree-2 field is compatible with a body in hydrostatic equilibrium within 1−σ and hint at regional gravity anomalies with amplitudes exceeding those inferred by Cassini for Titan. Our explicit treatment of non-hydrostatic effects leads to wider confidence intervals for the derived moment of inertia with respect previous analyses. The higher central value of the derived moment of inertia indicates a lesser degree of Ganymede's differentiation.
- Published
- 2022
4. Measurement of Jupiter’s asymmetric gravity field
- Author
-
S. M. Wahl, Jonathan I. Lunine, L. Gomez Casajus, Burkhard Militzer, Ryan S. Park, Andrea Milani, Dustin Buccino, William B. Hubbard, Paolo Tortora, Luciano Iess, Steven Levin, Marzia Parisi, Ravit Helled, Daniele Durante, Eli Galanti, Yamila Miguel, W. M. Folkner, Marco Zannoni, Scott Bolton, John D. Anderson, Daniele Serra, D. J. Stevenson, P. Racioppa, Tristan Guillot, Yohai Kaspi, Hao Cao, John E. P. Connerney, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), GeoForschungsZentrum - Helmholtz-Zentrum Potsdam (GFZ), University of Pisa - Università di Pisa, Industria de Turbo Propulsores (ITP), ITP, Dipartimento di Fisica 'Giuseppe Occhialini' = Department of Physics 'Giuseppe Occhialini' [Milano-Bicocca], Università degli Studi di Milano-Bicocca [Milano] (UNIMIB), Biomécanique et Bioingénierie (BMBI), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS), Tel Aviv University [Tel Aviv], Department of Astronomy [Ithaca], Cornell University [New York], NASA Goddard Space Flight Center (GSFC), ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015), Iess, L., Folkner, W.M., Durante, D., Parisi, M., Kaspi, Y., Galanti, E., Guillot, T., Hubbard, W.B., Stevenson, D.J., Anderson, J.D., Buccino, D.R., Casajus, L. Gomez, Milani, A., Park, R., Racioppa, P., Serra, D., Tortora, P., Zannoni, M., Cao, H., Helled, R., Lunine, J.I., Miguel, Y., Militzer, B., Wahl, S., Connerney, J.E.P., Levin, S.M., and Bolton, S.J.
- Subjects
Gravity (chemistry) ,010504 meteorology & atmospheric sciences ,Equator ,planetary sciences ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Rotation ,01 natural sciences ,Atmosphere ,Jupiter ,Gravitational field ,0103 physical sciences ,Differential rotation ,010303 astronomy & astrophysics ,Physics::Atmospheric and Oceanic Physics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Physics ,Multidisciplinary ,planetary geodesy ,spacecraft tracking systems ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Aerospace Engineering, Gas Giants ,Computational physics ,Harmonics ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics - Abstract
The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J_(2n) that are approximately proportional to q^n, where q is the ratio between centrifugal acceleration and gravity at the planet’s equator. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J_3, J_5, J_7, J_9 and higher, are a measure of the depth of the winds in the different zones of the atmosphere. Here we report measurements of Jupiter’s gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north–south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers, provides the vertical profile of the winds and precise constraints for the depth of Jupiter’s dynamical atmosphere.
- Published
- 2018
- Full Text
- View/download PDF
5. Jupiter gravity field estimated from the first two Juno orbits
- Author
-
Folkner, W. M., Iess, L., Anderson, J. D., Asmar, S. W., Buccino, D. R., Durante, D., Feldman, M., Gomez Casajus, L., Gregnanin, M., Milani, A., Parisi, M., Park, R. S., Serra, D., Tommei, G., Tortora, P., Zannoni, M., Bolton, S. J., Connerney, J. E. P., Levin, S. M., Folkner, W.M, Iess, L., Anderson, J.D., Asmar, S.W., Buccino, D.R., Durante, D., Feldman, M., Gomez Casajus, L., Gregnanin, M., Milani, A., Parisi, M., Park, R.S., Serra, D., Tommei, G., Tortora, P., Zannoni, M., Bolton, S.J., Connerney, J.E.P., and Levin, S.M.
- Subjects
jupiter gravity ,geophysics ,earth and planetary sciences (all) ,space tracking systems ,Jupiter gravity ,Astrophysics::Earth and Planetary Astrophysics ,Geophysic ,Earth and Planetary Sciences (all) ,Jupiter gravity field - Abstract
The combination of the Doppler data from the first two Juno science orbits provides an improved estimate of the gravity field of Jupiter, crucial for interior modeling of giant planets. The low-degree spherical harmonic coefficients, especially J4 and J6, are determined with accuracies better than previously published by a factor of 5 or more. In addition, the independent estimates of the Jovian gravity field, obtained by the orbits separately, agree within uncertainties, pointing to a good stability of the solution. The degree 2 sectoral and tesseral coefficients, C2,1, S2,1, C2,2, and S2,2, were determined to be statistically zero as expected for a fluid planet in equilibrium.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.