18 results on '"Carol C.L. Chen"'
Search Results
2. Table S2 from H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone
- Author
-
Nada Jabado, Claudia L. Kleinman, Livia Garzia, Michael D. Taylor, Stephen C. Mack, Benjamin A. Garcia, Peter W. Lewis, Pierre Thibault, Jay S. Wunder, Robert Turcotte, Brendan C. Dickson, Jason Karamchandani, Sungmi Jung, Ashot S. Harutyunyan, Véronique Lisi, Robert Eveleigh, Tianna S. Sihota, Kateryna Rossokhata, Siddhant U. Jain, Takeaki Ishii, Éric Bonneil, Joel Lanoix, Dylan M. Marchione, Damien Faury, Leonie G. Mikael, Carol C.L. Chen, Wajih Jawhar, Liam D. Hendrikse, Shriya Deshmukh, Nicolas De Jay, and Sima Khazaei
- Abstract
Differential Expression in Isogenic Lines
- Published
- 2023
3. Table S4 from H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone
- Author
-
Nada Jabado, Claudia L. Kleinman, Livia Garzia, Michael D. Taylor, Stephen C. Mack, Benjamin A. Garcia, Peter W. Lewis, Pierre Thibault, Jay S. Wunder, Robert Turcotte, Brendan C. Dickson, Jason Karamchandani, Sungmi Jung, Ashot S. Harutyunyan, Véronique Lisi, Robert Eveleigh, Tianna S. Sihota, Kateryna Rossokhata, Siddhant U. Jain, Takeaki Ishii, Éric Bonneil, Joel Lanoix, Dylan M. Marchione, Damien Faury, Leonie G. Mikael, Carol C.L. Chen, Wajih Jawhar, Liam D. Hendrikse, Shriya Deshmukh, Nicolas De Jay, and Sima Khazaei
- Abstract
Cell type-specific markers and pathways in single-cell transcriptomics
- Published
- 2023
4. Data from H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone
- Author
-
Nada Jabado, Claudia L. Kleinman, Livia Garzia, Michael D. Taylor, Stephen C. Mack, Benjamin A. Garcia, Peter W. Lewis, Pierre Thibault, Jay S. Wunder, Robert Turcotte, Brendan C. Dickson, Jason Karamchandani, Sungmi Jung, Ashot S. Harutyunyan, Véronique Lisi, Robert Eveleigh, Tianna S. Sihota, Kateryna Rossokhata, Siddhant U. Jain, Takeaki Ishii, Éric Bonneil, Joel Lanoix, Dylan M. Marchione, Damien Faury, Leonie G. Mikael, Carol C.L. Chen, Wajih Jawhar, Liam D. Hendrikse, Shriya Deshmukh, Nicolas De Jay, and Sima Khazaei
- Abstract
Glycine 34-to-tryptophan (G34W) substitutions in H3.3 arise in approximately 90% of giant cell tumor of bone (GCT). Here, we show H3.3 G34W is necessary for tumor formation. By profiling the epigenome, transcriptome, and secreted proteome of patient samples and tumor-derived cells CRISPR–Cas9-edited for H3.3 G34W, we show that H3.3K36me3 loss on mutant H3.3 alters the deposition of the repressive H3K27me3 mark from intergenic to genic regions, beyond areas of H3.3 deposition. This promotes redistribution of other chromatin marks and aberrant transcription, altering cell fate in mesenchymal progenitors and hindering differentiation. Single-cell transcriptomics reveals that H3.3 G34W stromal cells recapitulate a neoplastic trajectory from a SPP1+ osteoblast-like progenitor population toward an ACTA2+ myofibroblast-like population, which secretes extracellular matrix ligands predicted to recruit and activate osteoclasts. Our findings suggest that H3.3 G34W leads to GCT by sustaining a transformed state in osteoblast-like progenitors, which promotes neoplastic growth, pathologic recruitment of giant osteoclasts, and bone destruction.Significance:This study shows that H3.3 G34W drives GCT tumorigenesis through aberrant epigenetic remodeling, altering differentiation trajectories in mesenchymal progenitors. H3.3 G34W promotes in neoplastic stromal cells an osteoblast-like progenitor state that enables undue interactions with the tumor microenvironment, driving GCT pathogenesis. These epigenetic changes may be amenable to therapeutic targeting in GCT.See related commentary by Licht, p. 1794.This article is highlighted in the In This Issue feature, p. 1775
- Published
- 2023
5. Supplementary Figures from H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone
- Author
-
Nada Jabado, Claudia L. Kleinman, Livia Garzia, Michael D. Taylor, Stephen C. Mack, Benjamin A. Garcia, Peter W. Lewis, Pierre Thibault, Jay S. Wunder, Robert Turcotte, Brendan C. Dickson, Jason Karamchandani, Sungmi Jung, Ashot S. Harutyunyan, Véronique Lisi, Robert Eveleigh, Tianna S. Sihota, Kateryna Rossokhata, Siddhant U. Jain, Takeaki Ishii, Éric Bonneil, Joel Lanoix, Dylan M. Marchione, Damien Faury, Leonie G. Mikael, Carol C.L. Chen, Wajih Jawhar, Liam D. Hendrikse, Shriya Deshmukh, Nicolas De Jay, and Sima Khazaei
- Abstract
Supplementary Figures
- Published
- 2023
6. Table S5 from H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone
- Author
-
Nada Jabado, Claudia L. Kleinman, Livia Garzia, Michael D. Taylor, Stephen C. Mack, Benjamin A. Garcia, Peter W. Lewis, Pierre Thibault, Jay S. Wunder, Robert Turcotte, Brendan C. Dickson, Jason Karamchandani, Sungmi Jung, Ashot S. Harutyunyan, Véronique Lisi, Robert Eveleigh, Tianna S. Sihota, Kateryna Rossokhata, Siddhant U. Jain, Takeaki Ishii, Éric Bonneil, Joel Lanoix, Dylan M. Marchione, Damien Faury, Leonie G. Mikael, Carol C.L. Chen, Wajih Jawhar, Liam D. Hendrikse, Shriya Deshmukh, Nicolas De Jay, and Sima Khazaei
- Abstract
Golgi Secretome Analysis in Isogenic Lines
- Published
- 2023
7. Table S1 from H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone
- Author
-
Nada Jabado, Claudia L. Kleinman, Livia Garzia, Michael D. Taylor, Stephen C. Mack, Benjamin A. Garcia, Peter W. Lewis, Pierre Thibault, Jay S. Wunder, Robert Turcotte, Brendan C. Dickson, Jason Karamchandani, Sungmi Jung, Ashot S. Harutyunyan, Véronique Lisi, Robert Eveleigh, Tianna S. Sihota, Kateryna Rossokhata, Siddhant U. Jain, Takeaki Ishii, Éric Bonneil, Joel Lanoix, Dylan M. Marchione, Damien Faury, Leonie G. Mikael, Carol C.L. Chen, Wajih Jawhar, Liam D. Hendrikse, Shriya Deshmukh, Nicolas De Jay, and Sima Khazaei
- Abstract
Sample Characteristics and Quality Control
- Published
- 2023
8. Table S6 from H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone
- Author
-
Nada Jabado, Claudia L. Kleinman, Livia Garzia, Michael D. Taylor, Stephen C. Mack, Benjamin A. Garcia, Peter W. Lewis, Pierre Thibault, Jay S. Wunder, Robert Turcotte, Brendan C. Dickson, Jason Karamchandani, Sungmi Jung, Ashot S. Harutyunyan, Véronique Lisi, Robert Eveleigh, Tianna S. Sihota, Kateryna Rossokhata, Siddhant U. Jain, Takeaki Ishii, Éric Bonneil, Joel Lanoix, Dylan M. Marchione, Damien Faury, Leonie G. Mikael, Carol C.L. Chen, Wajih Jawhar, Liam D. Hendrikse, Shriya Deshmukh, Nicolas De Jay, and Sima Khazaei
- Abstract
Interactions between Stromal and Myeloid compartments
- Published
- 2023
9. Table S3 from H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone
- Author
-
Nada Jabado, Claudia L. Kleinman, Livia Garzia, Michael D. Taylor, Stephen C. Mack, Benjamin A. Garcia, Peter W. Lewis, Pierre Thibault, Jay S. Wunder, Robert Turcotte, Brendan C. Dickson, Jason Karamchandani, Sungmi Jung, Ashot S. Harutyunyan, Véronique Lisi, Robert Eveleigh, Tianna S. Sihota, Kateryna Rossokhata, Siddhant U. Jain, Takeaki Ishii, Éric Bonneil, Joel Lanoix, Dylan M. Marchione, Damien Faury, Leonie G. Mikael, Carol C.L. Chen, Wajih Jawhar, Liam D. Hendrikse, Shriya Deshmukh, Nicolas De Jay, and Sima Khazaei
- Abstract
Pathway Enrichment Analysis
- Published
- 2023
10. Supplementary Data from H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone
- Author
-
Nada Jabado, Claudia L. Kleinman, Livia Garzia, Michael D. Taylor, Stephen C. Mack, Benjamin A. Garcia, Peter W. Lewis, Pierre Thibault, Jay S. Wunder, Robert Turcotte, Brendan C. Dickson, Jason Karamchandani, Sungmi Jung, Ashot S. Harutyunyan, Véronique Lisi, Robert Eveleigh, Tianna S. Sihota, Kateryna Rossokhata, Siddhant U. Jain, Takeaki Ishii, Éric Bonneil, Joel Lanoix, Dylan M. Marchione, Damien Faury, Leonie G. Mikael, Carol C.L. Chen, Wajih Jawhar, Liam D. Hendrikse, Shriya Deshmukh, Nicolas De Jay, and Sima Khazaei
- Abstract
Supplementary Information
- Published
- 2023
11. SMARCA4 vulnerability in H3K27M midline glioma: A silver bullet for a lethal disease
- Author
-
Carol C.L. Chen, Augusto Faria Andrade, and Nada Jabado
- Subjects
Cell Biology ,Molecular Biology - Published
- 2023
12. Single substitution in H3.3G34 alters DNMT3A recruitment to cause progressive neurodegeneration
- Author
-
Sima Khazaei, Carol C.L. Chen, Augusto Faria Andrade, Nisha Kabir, Pariya Azarafshar, Shahir M. Morcos, Josiane Alves França, Mariana Lopes, Peder J. Lund, Geoffroy Danieau, Samantha Worme, Lata Adnani, Nadine Nzirorera, Xiao Chen, Gayathri Yogarajah, Caterina Russo, Michele Zeinieh, Cassandra J. Wong, Laura Bryant, Steven Hébert, Bethany Tong, Tianna S. Sihota, Damien Faury, Evan Puligandla, Wajih Jawhar, Veronica Sandy, Mitra Cowan, Emily M. Nakada, Loydie A. Jerome-Majewska, Benjamin Ellezam, Carolina Cavalieri Gomes, Jonas Denecke, Davor Lessel, Marie T. McDonald, Carolyn E. Pizoli, Kathryn Taylor, Benjamin T. Cocanougher, Elizabeth J. Bhoj, Anne-Claude Gingras, Benjamin A. Garcia, Chao Lu, Eric I. Campos, Claudia L. Kleinman, Livia Garzia, and Nada Jabado
- Subjects
General Biochemistry, Genetics and Molecular Biology - Published
- 2023
13. Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks
- Author
-
Johannes Berlandi, Amel Chaouch, Brian Krug, Carol C.L. Chen, Chao Lu, Steven Hébert, Shireen Badini, Xiao Chen, Paul Lasko, Martin Hasselblatt, Felice Frey, Ashot S. Harutyunyan, Nada Jabado, Astrid Jeibmann, Claudia L. Kleinman, and Margret Shirinian
- Subjects
Chromatin Immunoprecipitation ,genetic structures ,Centromere ,Piwi-interacting RNA ,Retrotransposon ,Epigenesis, Genetic ,Animals, Genetically Modified ,Histones ,Histone H3 ,Mice ,Methionine ,Animals ,Humans ,Epigenetics ,RNA-Seq ,Molecular Biology ,biology ,Lysine ,Computational Biology ,Cell Biology ,DNA Methylation ,Chromatin ,Cell biology ,Histone ,Drosophila melanogaster ,Phenotype ,Imaginal Discs ,Microscopy, Fluorescence ,Mutation ,biology.protein ,Eye development ,DNA Transposable Elements ,Microscopy, Electron, Scanning ,PRC2 - Abstract
Summary Histone H3.3 lysine-to-methionine substitutions K27M and K36M impair the deposition of opposing chromatin marks, H3K27me3/me2 and H3K36me3/me2. We show that these mutations induce hypotrophic and disorganized eyes in Drosophila eye primordia. Restriction of H3K27me3 spread in H3.3K27M and its redistribution in H3.3K36M result in transcriptional deregulation of PRC2-targeted eye development and of piRNA biogenesis genes, including krimp. Notably, both mutants promote redistribution of H3K36me2 away from repetitive regions into active genes, which associate with retrotransposon de-repression in eye discs. Aberrant expression of krimp represses LINE retrotransposons but does not contribute to the eye phenotype. Depletion of H3K36me2 methyltransferase ash1 in H3.3K27M, and of PRC2 component E(z) in H3.3K36M, restores the expression of eye developmental genes and normal eye growth, showing that redistribution of antagonistic marks contributes to K-to-M pathogenesis. Our results implicate a novel function for H3K36me2 and showcase convergent downstream effects of oncohistones that target opposing epigenetic marks.
- Published
- 2021
14. H3.3G34W promotes growth and impedes differentiation of osteoblast-like mesenchymal progenitors in Giant Cell Tumour of Bone
- Author
-
Jay S. Wunder, Jason Karamchandani, Ashot S. Harutyunyan, Nada Jabado, Robert E. Turcotte, Tianna S. Sihota, Damien Faury, Shriya Deshmukh, Peter W. Lewis, Kateryna Rossokhata, Stephen C. Mack, Brendan C. Dickson, Livia Garzia, Pierre Thibault, Leonie G. Mikael, Liam D. Hendrikse, Dylan M. Marchione, Carol C.L. Chen, Siddhant U. Jain, Takeaki Ishii, Sima Khazaei, Nicolas De Jay, Benjamin A. Garcia, Sungmi Jung, Véronique Lisi, Michael D. Taylor, Claudia L. Kleinman, Robert Eveleigh, Wajih Jawhar, Eric Bonneil, and Joel Lanoix
- Subjects
0301 basic medicine ,Stromal cell ,Population ,Gene Expression ,Bone Neoplasms ,Biology ,Article ,Extracellular matrix ,Histones ,03 medical and health sciences ,0302 clinical medicine ,medicine ,Humans ,Progenitor cell ,education ,Giant Cell Tumor of Bone ,education.field_of_study ,Tumor microenvironment ,Osteoblasts ,Mesenchymal stem cell ,Mesenchymal Stem Cells ,Osteoblast ,Cell Differentiation ,medicine.disease ,Chromatin ,Cell biology ,Nucleosomes ,030104 developmental biology ,medicine.anatomical_structure ,Oncology ,030220 oncology & carcinogenesis ,Mutation ,Giant-cell tumor of bone - Abstract
Glycine 34-to-tryptophan (G34W) substitutions in H3.3 arise in approximately 90% of giant cell tumor of bone (GCT). Here, we show H3.3 G34W is necessary for tumor formation. By profiling the epigenome, transcriptome, and secreted proteome of patient samples and tumor-derived cells CRISPR–Cas9-edited for H3.3 G34W, we show that H3.3K36me3 loss on mutant H3.3 alters the deposition of the repressive H3K27me3 mark from intergenic to genic regions, beyond areas of H3.3 deposition. This promotes redistribution of other chromatin marks and aberrant transcription, altering cell fate in mesenchymal progenitors and hindering differentiation. Single-cell transcriptomics reveals that H3.3 G34W stromal cells recapitulate a neoplastic trajectory from a SPP1+ osteoblast-like progenitor population toward an ACTA2+ myofibroblast-like population, which secretes extracellular matrix ligands predicted to recruit and activate osteoclasts. Our findings suggest that H3.3 G34W leads to GCT by sustaining a transformed state in osteoblast-like progenitors, which promotes neoplastic growth, pathologic recruitment of giant osteoclasts, and bone destruction. Significance: This study shows that H3.3 G34W drives GCT tumorigenesis through aberrant epigenetic remodeling, altering differentiation trajectories in mesenchymal progenitors. H3.3 G34W promotes in neoplastic stromal cells an osteoblast-like progenitor state that enables undue interactions with the tumor microenvironment, driving GCT pathogenesis. These epigenetic changes may be amenable to therapeutic targeting in GCT. See related commentary by Licht, p. 1794. This article is highlighted in the In This Issue feature, p. 1775
- Published
- 2020
15. Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis
- Author
-
Mathieu Blanchette, Albert M. Berghuis, Hiromichi Suzuki, Pratiti Bandopadhayay, Dong Anh Khuong-Quang, Dylan M. Marchione, Nicolas De Jay, Wajih Jawhar, Angelia V. Bassenden, Djihad Hadjadj, Ashot S. Harutyunyan, Shriya Deshmukh, Steffen Albrecht, Michele Zeinieh, Nikoleta Juretic, Paolo Salomoni, Katerina Vanova, Ales Vicha, Stefan M. Pfister, Manav Pathania, Selin Jessa, Almos Klekner, Leonie G. Mikael, CM Kramm, David T.W. Jones, Tenzin Gayden, Sebastian Brandner, Michal Zapotocky, Nicola Maestro, Eleanor Woodward, Alexander G. Weil, David S. Ziegler, Jordan R. Hansford, Steven Hébert, Frank Dubois, Benjamin Ellezam, Deli A, Damien Faury, Véronique Lisi, Augusto Faria Andrade, Andrey Korshunov, Mariella G. Filbin, Michael D. Taylor, Claudia L. Kleinman, Andrea Bajic, Carol C.L. Chen, Caterina Russo, Nada Jabado, Peter Hauser, Benjamin A. Garcia, Stephen C. Mack, Keith L. Ligon, David Sumerauer, Lenka Krskova, Jason Karamchandani, Rameen Beroukhim, Rola Dali, László Bognár, Dominik Sturm, József Virga, Marie Coutelier, Livia Garzia, Paul G Ekert, and Josef Zamecnik
- Subjects
genetics [Glioma] ,metabolism [Histones] ,Receptor, Platelet-Derived Growth Factor alpha ,Transcription, Genetic ,Carcinogenesis ,pathology [Carcinogenesis] ,genetics [Transcriptome] ,metabolism [Neural Stem Cells] ,medicine.disease_cause ,Epigenesis, Genetic ,Histones ,chromatin conformation ,0302 clinical medicine ,Neural Stem Cells ,genetics [Carcinogenesis] ,Promoter Regions, Genetic ,metabolism [Interneurons] ,pathology [Astrocytes] ,0303 health sciences ,Mutation ,metabolism [Astrocytes] ,biology ,Brain Neoplasms ,cell-of-origin ,Glioma ,metabolism [Receptor, Platelet-Derived Growth Factor alpha] ,Cellular Reprogramming ,genetics [Histones] ,metabolism [Lysine] ,Chromatin ,pediatric cancer ,Gene Expression Regulation, Neoplastic ,Oligodendroglia ,genetics [Cellular Reprogramming] ,PDGFRA ,Histone ,GSX2 ,Lineage (genetic) ,pathology [Brain Neoplasms] ,interneuron progenitors ,metabolism [Chromatin] ,genetics [Mutation] ,Context (language use) ,embryology [Prosencephalon] ,Models, Biological ,Article ,General Biochemistry, Genetics and Molecular Biology ,metabolism [Oligodendroglia] ,H3.3 G34R/V ,03 medical and health sciences ,Histone H3 ,Prosencephalon ,Interneurons ,medicine ,Animals ,Cell Lineage ,ddc:610 ,Gene Silencing ,metabolism [Embryo, Mammalian] ,030304 developmental biology ,Lysine ,single-cell transcriptome ,Embryo, Mammalian ,Pediatric cancer ,oncohistones ,digestive system diseases ,genetics [Receptor, Platelet-Derived Growth Factor alpha] ,genetics [Brain Neoplasms] ,Mice, Inbred C57BL ,gliomas ,Astrocytes ,genetics [Promoter Regions, Genetic] ,biology.protein ,Cancer research ,Neoplasm Grading ,Transcriptome ,pathology [Glioma] ,030217 neurology & neurosurgery - Abstract
Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here, we show that 50% of G34R/V-tumours (n=95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. While considered gliomas, G34R/V-tumours actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V-mutations impair neuronal differentiation. The lineage-of-origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V-tumours harbour dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell-fate specification. G34R/V may become dispensable for tumour maintenance, while mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumours. G34R/V-gliomas are neuronal malignancies, where interneuron progenitors are stalled in differentiation by G34R/V-mutations, and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signalling.
- Published
- 2020
16. Abstract B09: Epigenetic changes mediated by H3.3 G34R mutation in a CRISPR-edited pediatric glioblastoma cell line
- Author
-
Carol C.L. Chen, Shriya Deshmukh, Amira Ouanouki, and Nada Jabado
- Subjects
Cancer Research ,biology ,Cas9 ,Epigenome ,medicine.disease_cause ,Pediatric cancer ,Histone H3 ,Histone ,Oncology ,biology.protein ,medicine ,Cancer research ,CRISPR ,Epigenetics ,Carcinogenesis - Abstract
Background: Pediatric glioblastomas (pGBM) are aggressive and lethal brain tumors with few effective treatment options. Since the discovery of recurrent histone H3 mutations in pGBMs, multiple groups have sought to uncover the mechanism by which these mutations drive tumorigenesis. One striking aspect of histone H3 mutations is their tumor location and age-specificity: the K27M mutation occurs in midline brain structures in infants and young children, whereas the G34R/V mutations occur in the cerebral hemisphere of adolescents. Efforts to elucidate the mechanism underlying K27M tumorigenesis have centered on K27M-mediated inhibition of the PRC2 complex and the resulting drastic loss of the repressive H3K27me3 mark in these tumors. Studies have shown that G34 mutations affect methylation of the adjacent K36 residue, resulting in a local decrease of the active H3K36me3 mark on the mutant histone. It remains uncertain whether the G34R/V mutations promote global changes in the epigenome that drive tumorigenesis. Methods: To investigate the epigenetic consequences of the G34R mutation, we generated an isogenic in vitro model using CRISPR/Cas9 to correct the G34R mutation in a pGBM-derived cell line. We then comprehensively characterized and compared the epigenome and transcriptome of CRISPR-unedited clones (carrying the G34R mutation) and CRISPR-edited (wild-type) clones. Using ChIP-seq, we profiled H3K36me3 and H3K27me3 marks to study G34R-mediated regulation of these antagonistic marks. Results: ChIP-seq profiling revealed that CRISPR editing of the G34R mutation had minimal effects on total levels or genomic distribution and profile of H3K36me3 and H3K27me3 marks. In contrast, we previously showed that CRISPR editing of the K27M mutation in pGBM cell lines rescued total H3K27me3 levels and genomic distribution to that of histone wild-type pGBMs. In agreement with their similar epigenetic profiles, there were very few transcriptomic differences between G34R and wildtype cells. Conclusions: Our results suggest that the epigenome in G34R-mutant pGBM cells may be less dynamic or amenable to epigenetic perturbation from removal of the initial driver oncomutation than K27M-mutant tumors. These findings underscore that different strategies may be required to target and treat G34R and K27M-mutant pGBM tumors. Citation Format: Shriya Deshmukh, Carol C.L. Chen, Amira Ouanouki, Nada Jabado. Epigenetic changes mediated by H3.3 G34R mutation in a CRISPR-edited pediatric glioblastoma cell line [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr B09.
- Published
- 2020
17. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis
- Author
-
Gael Cagnone, Siddhant U. Jain, Warren A. Cheung, Jacek Majewski, Simon Papillon-Cavanagh, Shriya Deshmukh, Hamid Nikbakht, Jad I. Belle, Haifen Chen, Damien Faury, Benjamin Ellezam, Peter W. Lewis, Carol C.L. Chen, Nicolas De Jay, Abdulshakour Mohammadnia, Bo Hu, Melissa K. McConechy, Brian Krug, Dylan M. Marchione, Claudia L. Kleinman, Michele Zeinieh, Chao Lu, Ashot S. Harutyunyan, Tomi Pastinen, Leonie G. Mikael, Benjamin A. Garcia, Manav Pathania, Alexander G. Weil, Nada Jabado, Rui Li, Alexandre Montpetit, Denise Bechet, and Paolo Salomoni
- Subjects
0301 basic medicine ,Male ,metabolism [Histones] ,Carcinogenesis ,metabolism [Polycomb Repressive Complex 2] ,genetics [Histone Code] ,General Physics and Astronomy ,02 engineering and technology ,Mice, SCID ,medicine.disease_cause ,genetics [Glioblastoma] ,Epigenesis, Genetic ,pathology [Glioblastoma] ,Histones ,Mice ,Methionine ,Mice, Inbred NOD ,genetics [Carcinogenesis] ,Histone code ,lcsh:Science ,Child ,Regulation of gene expression ,Gene Editing ,Multidisciplinary ,biology ,Brain Neoplasms ,Neurogenesis ,Polycomb Repressive Complex 2 ,021001 nanoscience & nanotechnology ,genetics [Histones] ,Chromatin ,3. Good health ,Cell biology ,genetics [Methionine] ,Gene Expression Regulation, Neoplastic ,Histone Code ,Histone ,genetics [Neurogenesis] ,DNA methylation ,Female ,ddc:500 ,0210 nano-technology ,PRC2 ,methods [Gene Editing] ,pathology [Brain Neoplasms] ,Adolescent ,metabolism [Chromatin] ,Science ,macromolecular substances ,genetics [DNA Methylation] ,General Biochemistry, Genetics and Molecular Biology ,Article ,03 medical and health sciences ,Cell Line, Tumor ,medicine ,Animals ,Humans ,genetics [Lysine] ,Aged ,Cell Proliferation ,Lysine ,General Chemistry ,DNA Methylation ,Xenograft Model Antitumor Assays ,genetics [Brain Neoplasms] ,030104 developmental biology ,HEK293 Cells ,Mutation ,biology.protein ,lcsh:Q ,CpG Islands ,CRISPR-Cas Systems ,Glioblastoma ,genetics [Cell Proliferation] ,genetics [CpG Islands] - Abstract
Lys-27-Met mutations in histone 3 genes (H3K27M) characterize a subgroup of deadly gliomas and decrease genome-wide H3K27 trimethylation. Here we use primary H3K27M tumor lines and isogenic CRISPR-edited controls to assess H3K27M effects in vitro and in vivo. We find that whereas H3K27me3 and H3K27me2 are normally deposited by PRC2 across broad regions, their deposition is severely reduced in H3.3K27M cells. H3K27me3 is unable to spread from large unmethylated CpG islands, while H3K27me2 can be deposited outside these PRC2 high-affinity sites but to levels corresponding to H3K27me3 deposition in wild-type cells. Our findings indicate that PRC2 recruitment and propagation on chromatin are seemingly unaffected by K27M, which mostly impairs spread of the repressive marks it catalyzes, especially H3K27me3. Genome-wide loss of H3K27me3 and me2 deposition has limited transcriptomic consequences, preferentially affecting lowly-expressed genes regulating neurogenesis. Removal of H3K27M restores H3K27me2/me3 spread, impairs cell proliferation, and completely abolishes their capacity to form tumors in mice., Lysine27-to-methionine mutations in histone H3 genes (H3K27M) occur in a subgroup of gliomas and decrease genome-wide H3K27 trimethylation. Here the authors utilise primary H3K27M tumour lines and isogenic CRISPR-edited controls and show that H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3.
- Published
- 2018
18. Pervasive H3K27 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas
- Author
-
Benjamin Ellezam, Paul Guilhamon, Peter W. Lewis, Nicolas De Jay, Nada Jabado, Josie Ursini-Siegel, Sameer Agnihotri, Mathieu Lupien, Peter B. Dirks, Paul Lasko, Ashot S. Harutyunyan, Stephen C. Mack, Damien Faury, Robert F. Koncar, Carol C.L. Chen, Paolo Salomoni, Dylan M. Marchione, Shriya Deshmukh, Daniel D. De Carvalho, Leonie G. Mikael, Alexander G. Weil, Claudia L. Kleinman, Melissa K. McConechy, Brian Krug, Kelsey C. Bertrand, Benjamin A. Garcia, Sima Khazaei, and Cheryl H. Arrowsmith
- Subjects
0301 basic medicine ,Epigenomics ,genetics [Glioma] ,Cancer Research ,metabolism [Histones] ,drug effects [Gene Expression Regulation, Neoplastic] ,Vulnerability ,medicine.disease_cause ,metabolism [Glioma] ,Histones ,0302 clinical medicine ,drug therapy [Brain Neoplasms] ,methods [Epigenomics] ,therapeutic use [Histone Deacetylase Inhibitors] ,Mutation ,0303 health sciences ,Brain Neoplasms ,Acetylation ,Glioma ,genetics [Histones] ,Chromatin ,Cell biology ,metabolism [Brain Neoplasms] ,3. Good health ,Gene Expression Regulation, Neoplastic ,Histone ,Enhancer Elements, Genetic ,Oncology ,Expression (architecture) ,030220 oncology & carcinogenesis ,metabolism [Chromatin] ,Biology ,Article ,03 medical and health sciences ,Cell Line, Tumor ,drug therapy [Glioma] ,medicine ,Humans ,ddc:610 ,Enhancer ,030304 developmental biology ,Cell Biology ,drug effects [Enhancer Elements, Genetic] ,genetics [Brain Neoplasms] ,Histone Deacetylase Inhibitors ,030104 developmental biology ,DNA demethylation ,Cancer cell ,biology.protein ,Cancer research ,Histone deacetylase ,pharmacology [Histone Deacetylase Inhibitors] - Abstract
High-grade gliomas (HGG) defined by histone 3 K27M driver mutations exhibit global loss of H3K27 trimethylation and reciprocal gain of H3K27 acetylation, respectively shaping repressive and active chromatin landscapes. We generated tumor-derived isogenic models bearing this mutation and show that it leads to pervasive H3K27ac deposition across the genome. In turn, active enhancers and promoters are not created de novo and instead reflect the epigenomic landscape of the cell of origin. H3K27ac is enriched at repeat elements, resulting in their increased expression, which in turn can be further amplified by DNA demethylation and histone deacetylase inhibitors providing an exquisite therapeutic vulnerability. These agents may therefore modulate anti-tumor immune responses as a therapeutic modality for this untreatable disease.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.