7 results on '"Caroll Vergelati"'
Search Results
2. Controlling the morphology in epoxy/thermoplastic systems
- Author
-
Eléonore Mathis, Marie-Laure Michon, Claude Billaud, Caroll Vergelati, Nigel Clarke, Jacques Jestin, Didier R. Long, Laboratoire Polymères et Matériaux Avancés (LPMA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), SOLVAY Res & Innovat Ctr Lyon, Solvay S.A., Solvay (France), Solvay Composite Materials (SCM), Department of Physics and Astronomy [Sheffield], University of Sheffield [Sheffield], Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), LLB - Matière molle et biophysique (MMB), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymers and Plastics ,Process Chemistry and Technology ,Organic Chemistry - Abstract
International audience; Thermosets are frequently toughened by a high-T g thermoplastic (TP). Blend morphologies, obtained by curing induced phase separation with scales of a few hundreds of nanometers are relevant for highperformance applications, but no quantitative description for obtaining these morphologies exist yet. We propose such a quantitative approach for predicting and controlling the final morphology. The key is the degree of curing and the corresponding T g of the blend and of both phases when phase separation takes place. It is controlled by the Flory interaction parameter of the constituents and their respective T g 's. We show that if phase separation takes place too early during curing, the T g is too low and morphologies grow to reach sizes of a few micrometers, or more. Our study of different systems allows us to propose the relevant range of Flory interaction parameter and temperature window T-T g for which the sizes of interest may be obtained. Our work opens the way for devising thermoplasticsthermosets couples with the appropriate affinity and T g s in order to make blends with tailored morphologies.
- Published
- 2022
- Full Text
- View/download PDF
3. Thermoset modified with polyethersulfone: characterization and control of the morphology
- Author
-
Eléonore Mathis, Claude Billaud, Pauline Grau, Didier R. Long, Marie-Laure Michon, Anthony Bocahut, Caroll Vergelati, Laboratoire Polymères et Matériaux Avancés (LPMA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), SOLVAY Res & Innovat Ctr Lyon, Solvay S.A., CNRS UMR 5268 CNRS/Solvay, Solvay Research and Innovation Center, F-69192 Saint-Fons, 3Solvay Composite Materials, R420 The Wilton Centre, Redcar, UK, Laboratoire des Polymères et Matériaux Avancés (LPMA), and CNRS/Rhodia
- Subjects
[PHYS]Physics [physics] ,Materials science ,Morphology (linguistics) ,Polymers and Plastics ,Thermosetting polymer ,02 engineering and technology ,Epoxy ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Toughening ,0104 chemical sciences ,Characterization (materials science) ,[SPI]Engineering Sciences [physics] ,[CHIM.POLY]Chemical Sciences/Polymers ,visual_art ,Materials Chemistry ,visual_art.visual_art_medium ,Polymer blend ,Physical and Theoretical Chemistry ,Composite material ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Thermoset (TS) epoxy resins can be toughened with a thermoplastic (TP) for high‐performance applications. The final structure morphology has to be controlled to achieve high mechanical properties and high impact resistance. Four polyethersulfone‐modified epoxy resins are considered. They consist of different epoxy monomer structure (TGAP, triglycidyl‐p‐aminophenol and TGDDM, tetraglycidyl diaminodiphenylmethane) and a fixed amount of thermoplastic, and they are cured with two different amounts of curing agent. A reaction‐induced phase separation occurs for all formulations generating morphologies, different in shapes and scales. The aim is to control the final morphology and in particular its dominant length scale. This morphology depends on the phase separation process, from the initiation to its final stage. The initiation relies on the relative miscibility of the components and on the stoichiometry between epoxy and curing agent. The kinetics depends on the viscosity of the systems. The different morphologies are characterized by electron microscopy or neutron scattering. Dynamic mechanical analysis allows confirming the presence of a phase separation even when it is not observable by electron microscopy. Vermicular morphologies with few hundreds nanometer width are obtained for the systems containing the TGAP as epoxy monomer. Systems formulated with TGDDM presents morphologies on much smaller scale of order a few tens of nanometers. We interpret the different sizes of the morphologies as a consequence of a larger viscosity for the TGDDM systems as compared to the TGAP ones rather than by a latter initiation of phase separation
- Published
- 2020
- Full Text
- View/download PDF
4. Viscoelastic behaviour of cellulose acetate/triacetin blends by rheology in the melt state
- Author
-
Alexandra Argoud, Xavier Dreux, Jean-Charles Majesté, Christian Carrot, Caroll Vergelati, Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Polymères et Matériaux Avancés (LPMA), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Polymers and Plastics ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Viscoelasticity ,chemistry.chemical_compound ,Rheology ,Plasticizers ,Materials Chemistry ,Elasticity (economics) ,Composite material ,Cellulose ,Triacetin ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Viscosity ,Organic Chemistry ,Temperature ,Hydrogen Bonding ,Polymer ,Strain hardening exponent ,021001 nanoscience & nanotechnology ,Cellulose acetate ,Elasticity ,Weissenberg effect ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,0210 nano-technology - Abstract
The viscoelastic behaviour of cellulose acetate with a degree of substitution (DS) of 245 plasticized by triacetin was studied at short times by dynamic oscillatory measurements. Two distinct regimes and unexpected scaling behaviour according to plasticizer content were highlighted. The dynamics of chains and their structural organization are not modified up to 35 wt% of triacetin. The rheological behaviour is led by a constant correlation length corresponding to the distance between strong intermolecular interactions subsisting in the melt state at high temperature even in the presence of plasticizer. This particular structure involves the apparition of strain hardening effects during uniaxial extensional flow tests and an important elasticity corresponding to the apparition of a Weissenberg effect at really low shear rates during shear sweeps. Intramolecular hydrogen bonds are responsible of the high rigidity of cellulose acetate chains. Plasticized cellulose acetate in the melt state belongs to the class of associating polymers and its rheological behaviour is mainly led by stickers.
- Published
- 2019
- Full Text
- View/download PDF
5. Damage Mechanisms of Plasticized Cellulose Acetate under Tensile Deformation Studied by Ultrasmall-Angle X-ray Scattering
- Author
-
Didier R. Long, Agathe Charvet, Paul Sotta, Caroll Vergelati, Laboratoire Polymères et Matériaux Avancés (LPMA), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Polymers and Plastics ,Scattering ,Organic Chemistry ,X-ray ,02 engineering and technology ,Deformation (meteorology) ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Cellulose acetate ,0104 chemical sciences ,Inorganic Chemistry ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Ultimate tensile strength ,Materials Chemistry ,Composite material ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
We consider the microscopic mechanisms of damaging in plasticized cellulose acetate under tensile stress. We show how they appear and develop during the course of deformation until failure. By usin...
- Published
- 2019
- Full Text
- View/download PDF
6. Mechanical and ultimate properties of injection molded cellulose acetate/plasticizer materials
- Author
-
Caroll Vergelati, Didier R. Long, Agathe Charvet, Laboratoire Polymères et Matériaux Avancés (LPMA), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Polymers and Plastics ,02 engineering and technology ,010402 general chemistry ,Diethyl phthalate ,01 natural sciences ,chemistry.chemical_compound ,Ultimate tensile strength ,Materials Chemistry ,Composite material ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,[PHYS]Physics [physics] ,Organic Chemistry ,Plasticizer ,Izod impact strength test ,Polymer ,Strain hardening exponent ,021001 nanoscience & nanotechnology ,Cellulose acetate ,0104 chemical sciences ,Amorphous solid ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
The mechanical properties of injection molded plasticized cellulose acetate polymers processed with two different plasticizers (Triacetine and Diethyl phthalate) and various weight fractions comprised between 15 and 30 wt % have been investigated. Plasticized cellulose acetate exhibit a brittle-to-ductile transition from a low impact strength to a high impact strength of order 40 kJ/m². Obtaining a high impact resistance at room temperature requires plasticizer content larger than 25 wt.%. An important strain hardening is obtained for samples with both plasticizers during tensile experiment. At 15 wt.% plasticizer content, the measured strain hardening modulus is around 148 MPa at 60 °C. Different parameters influencing the strain hardening behavior have been identified: the tensile direction as compared to that of the injection flow, the temperature and the plasticizer, consistent with studies on pre-strained samples of synthetic amorphous polymers.
- Published
- 2019
- Full Text
- View/download PDF
7. Étude des propriétés mécaniques et des mécanismes d’endommagement dans un polymère bio-source : l’acétate de cellulose plastifié
- Author
-
Charvet, Agathe, Laboratoire Polymères et Matériaux Avancés (LPMA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, Didier Long, and Caroll Vergelati
- Subjects
Damage ,Traction ,Cellulose acetate ,Failure ,Endommagement ,USAXS ,Propriétés mécaniques ,Mechanical properties ,Acétate de cellulose ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Crazing ,Durcissement ,Strain hardening - Abstract
Cellulose acetate (CA) is a bio based polymer. Melt processing of cellulose based thermoplastic polymers is a real challenge. One problem is the existence of a narrow window between the melting point and the degradation temperatures for cellulose acetate with a substitution degree (DS) around 2.45 (which is developed and commercialized by Rhodia Acetow). As a consequence, its processing can only be considered with a sufficient amount of externalplasticizer (between 15 and 30% by weight). The corresponding polymer/plasticizer blends areamorphous and their mechanical properties are mainly governed by the presence of a high volume fraction of strong hydrogen bonds. The plasticization of cellulose acetate has been thesubject of many studies allowing us to focus on two plasticizers: triacetin (TA), an eco-friendlyplasticizer frequently used for cellulose acetate and diethyl phthalate (DEP) which is the historicplasticizer of cellulose acetate which constitutes a reference for this work as it is usually the case in the literature. Few studies have been published regarding the mechanical properties of bulk cellulose acetate (prepared via injection molding). It is described that they are comparable to those of PS or poly(methyl methacrylate) (PMMA) and have proven to be particularly interesting. Cellulose acetate based materials usually display a high Young modulus. But its small deformation at break limits its potential for new applications. The objectives of this thesis are to deeply understand the mechanical properties and damage mechanisms of bulk plasticized cellulose acetate polymers. For this purpose we first analyzed the tensile behavior and the influence of various parameters such as nature and content of the plasticizer, but also the influence of the injection process. We have thus been able to highlight the appearance of a strain hardening regime from 8% of deformation under certain conditions. It appears that the choice of the plasticizer, the temperature of the experiment and the macroscopic pre-orientation of the chains significantly influence this regime. Strain hardening has already been observed in other amorphous polymers such as polycarbonate (PC) or poly (methyl methacrylate) (PMMA) which are classified as amorphous polymers called "ductile". The origin of this regime is still undeveloped and much debated, however it appears that it stabilizes the deformation by avoiding the localization of damage and is therefore a key parameter for improving the ductility of these polymers. In order to better understand this ductility, we have made some analysis by Scanning Transmission Electron Microscopy (STEM) as well as Ultra Small Angles X-ray Scattering (USAXS). Thanks to these characterizations we have been able to describe the micromechanisms of damage from macro to nano-scales and thus precisely describe the micromechanisms related to initiation and propagation of damage. By these analyzes we highlight the simultaneous nucleation of nano crazes around pre-existing defects (related to the injection process). These crazes grow slowly until reaching the hundred microns. However, when the applied stress becomes sufficiently high, a small portion of these crazes starts to grow faster until the failure of the sample. With DEP the kinetics of growth is very fast, causing a brittle failure of the sample. With TA this growth is slower, which makes it possible to observe the evolution of the larger crazes. This work proposes a new mechanism of damage in plasticized cellulose acetate based on experimental results and physical interpretations; L'acétate de cellulose (CA) est un bio-polymère issu de la cellulose du bois. Sa température de dégradation (dont le degré de substitution 2,5 est développé et commercialisé par le Groupe Solvay) étant très proche de sa température de fusion, son procédé de mise en oeuvre par voie fondue ne peut être envisagé qu'avec l'ajout d'une quantité importante de plastifiant externe (entre 15 et 30% en poids). Le polymère plastifié obtenu est classé parmi les thermoplastiques amorphes et ses propriétés sont régies par un «réseau» de très fortes interactions polaires. La plastification de l'acétate de cellulose à fait l'objet de nombreux travaux nous permettant de nous concentrer in fine sur deux plastifiants: la triacétine (TA), un plastifiant biosourcé fréquemment utilisé dans l'acétate de cellulose et le Diethyl Phthalate (DEP) qui est le plastifiant historique de l'acétate de cellulose et constitue une référence. Les propriétés mécaniques de l'acétate de cellulose plastifié obtenu par voie fondue étant peu étudiées dans la littérature, nous avons dans un premier temps évalué le comportement en traction et l'influence de différents paramètres tels que le taux et le choix du plastifiant mais également l'influence du procédé d'injection sur ces propriétés. Nous avons ainsi pu mettre en évidence l'apparition d'un régime de durcissement plastique (strain hardening en anglais) dès 8% de déformation sous certaines conditions. Il apparaît que le choix du plastifiant, la température d'analyse et la pré-orientation macroscopique des chaînes influencent significativement ce régime. Le durcissement plastique a déjà été observé dans d'autre polymères amorphes tels que le polycarbonate (PC) ou le poly(méthyle methacrylate) (PMMA) qui sont classés parmi les polymères amorphes dit « ductiles ». L'origine de ce régime est encore peu connue et suscite de nombreux débats, cependant il semblerait qu'il stabilise la déformation en évitant la localisation de l'endommagement et serait donc un paramètre clé pour l'amélioration de la ductilité de ces polymères. Afin de mieux comprendre cette ductilité nous avons réalisé des observations par microscopie électronique à balayage en transmission (STEM) ainsi que par diffusion des rayons X aux très petits angles (USAXS). Grâce à ces caractérisations nous avons pu décrire les micro-mécanismes d'endommagement sous traction de nos polymères depuis l'échelle macroscopique jusqu'à l'échelle nanométrique et ainsi décrire précisément les micro-mécanismes liés à l'initiation et la propagation de l'endommagement. Par ces analyses nous mettons en évidence la nucléation simultanée de craquelures nanométriques autour des défauts préexistants (liés au processus de mise en oeuvre). Ces craquelures vont ensuite croitre de façon très limitée jusqu'à atteindre la centaine de micron. Cependant lorsque la contrainte appliquée devient suffisamment élevée, une petite portion de ces craquelures vont se mettre à croitre plus rapidement jusqu'à entrainer la rupture de l'échantillon. Avec le DEP la cinétique de croissance est très rapide, entrainant une rupture brutale de l'échantillon dès qu'une craquelure atteint une dimension critique. Avec la TA néanmoins cette vitesse est plus lente, ce qui permet d'observer l'évolution d'une deuxième famille de craquelures. Ces travaux proposent un nouveau mécanisme d'endommagement dans l'acétate de cellulose plastifié basé sur des résultats expérimentaux et un modèle physique permettant une meilleure compréhension de la ductilité dans ces polymères
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.