1. Measure and characterization of the forces exerted by growing multicellular spheroids using microdevice arrays.
- Author
-
Aoun L, Larnier S, Weiss P, Cazales M, Herbulot A, Ducommun B, Vieu C, and Lobjois V
- Subjects
- Female, Humans, Stress, Mechanical, Tissue Array Analysis, Breast Neoplasms pathology, Cell Culture Techniques instrumentation, Microfluidic Analytical Techniques instrumentation, Spheroids, Cellular pathology
- Abstract
Growing multicellular spheroids recapitulate many features of expanding microtumours, and therefore they are an attractive system for biomechanical studies. Here, we report an original approach to measure and characterize the forces exerted by proliferating multicellular spheroids. As force sensors, we used high aspect ratio PDMS pillars arranged as a ring that supports a growing breast tumour cell spheroid. After optical imaging and determination of the force application zones, we combined 3D reconstruction of the shape of each deformed PDMS pillar with the finite element method to extract the forces responsible for the experimental observation. We found that the force exerted by growing spheroids ranges between 100nN and 300nN. Moreover, the exerted force was dependent on the pillar stiffness and increased over time with spheroid growth., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF