81 results on '"Chantot-Bastaraud S"'
Search Results
2. Deletion of CPEB1 Gene: A Rare but Recurrent Cause of Premature Ovarian Insufficiency
- Author
-
Hyon, C., Mansour-Hendili, L., Chantot-Bastaraud, S., Donadille, B., Kerlan, V., Dodé, C., Jonard, S., Delemer, B., Gompel, A., Reznik, Y., Touraine, P., Siffroi, J. P., and Christin-Maitre, S.
- Published
- 2016
3. Genetic counselling difficulties and ethical implications of incidental findings from array-CGH: a 7-year national survey
- Author
-
Lefebvre, M., Sanlaville, D., Marle, N., Thauvin-Robinet, C., Gautier, E., Chehadeh, S. E., Mosca-Boidron, A.-L., Thevenon, J., Edery, P., Alex-Cordier, M.-P., Till, M., Lyonnet, S., Cormier-Daire, V., Amiel, J., Philippe, A., Romana, S., Malan, V., Afenjar, A., Marlin, S., Chantot-Bastaraud, S., Bitoun, P., Heron, B., Piparas, E., Morice-Picard, F., Moutton, S., Chassaing, N., Vigouroux-Castera, A., Lespinasse, J., Manouvrier-Hanu, S., Boute-Benejean, O., Vincent-Delorme, C., Petit, F., Meur, N. L., Marti-Dramard, M., Guerrot, A.-M., Goldenberg, A., Redon, S., Ferrec, C., Odent, S., Caignec, C. L., Mercier, S., Gilbert-Dussardier, B., Toutain, A., Arpin, S., Blesson, S., Mortemousque, I., Schaefer, E., Martin, D., Philip, N., Sigaudy, S., Busa, T., Missirian, C., Giuliano, F., Benailly, H. K., Kien, P. K.V., Leheup, B., Benneteau, C., Lambert, L., Caumes, R., Kuentz, P., François, I., Heron, D., Keren, B., Cretin, E., Callier, P., Julia, S., and Faivre, L.
- Published
- 2016
- Full Text
- View/download PDF
4. The enrichment of breakpoints in late-replicating chromatin provides novel insights into chromoanagenesis mechanisms
- Author
-
Chatron, N., Giannuzzi, G., Rollat-Farnier, P., Diguet, F., Porcu, E., Yammine, T., Uguen, K., Bellil, Z., Zillhardt, J. Lauer, Sorlin, A., Ader, F., Afenjar, A., Andrieux, J., Bardel, Claire, Calpena, E., Chantot-Bastaraud, S., Callier, P., Chelloug, N., Chopin, E., Cordier, M., Dubourg, C., Faivre, L., Girard, F., Heide, S., Herenger, Y., Jaillard, S., Keren, B., Knight, S. J. L., Lespinasse, J., Lohmann, L., Marle, N., Maroofian, R., Masurel-Paulet, Alice, Mathieu-Dramard, M., Metay, C., Pagnamenta, A. T., Portnoi, M., Prieur, F., Rio, M., Siffroi, J., Valence, S., Taylor, J. C., Wilkie, A. O. M., Edery, P., Reymond, A., Sanlaville, D., Schluth-Bolard, C., Hôpital Edouard Herriot [CHU - HCL], Hospices Civils de Lyon (HCL), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Hospices Civils de Lyon, Departement de Neurologie (HCL), Université de Lausanne = University of Lausanne (UNIL), Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Laboratoire de Diagnostic Génétique [CHU Strasbourg], Université de Strasbourg (UNISTRA)-CHU Strasbourg, Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Centre de génétique - Centre de référence des maladies rares, anomalies du développement et syndromes malformatifs (CHU de Dijon), Assistance publique-Hôpitaux de Paris - Espace éthique (AP-HP Espace éthique), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), CHU Trousseau [APHP], Service de neurophysiologie clinique (CHRU Lille), Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), The Weatherall Institute of Molecular Medicine, University of Oxford, Centre Hospitalier Régional Universitaire de Tours (CHRU Tours), CHU Pontchaillou [Rennes], Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), CHU Strasbourg, The Wellcome Trust Centre for Human Genetics [Oxford], Centre Hospitalier Métropole Savoie [Chambéry], Laboratoire CERBA [Saint Ouen l'Aumône], University College of London [London] (UCL), CHU Amiens-Picardie, CHU Henri Mondor [Créteil], Centre Hospitalier Universitaire de Saint-Etienne [CHU Saint-Etienne] (CHU ST-E), CHU Necker - Enfants Malades [AP-HP], Université Paris 1 Panthéon-Sorbonne (UP1), Chard-Hutchinson, Xavier, Service de Génétique Cytogénétique et Embryologie [CHU Pitié-Salpêtrière], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Service d'Hépato-Gastro-Entérologie [CHU Pitié-Salpêtrière], CHU Henri Mondor, Centre Hospitalier Universitaire de Saint-Etienne (CHU de Saint-Etienne), Centre de recherche en neurosciences de Lyon (CRNL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Lausanne (UNIL), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), University of Oxford [Oxford], Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Centre Hospitalier Régional Universitaire de Tours (CHRU TOURS), Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2020
- Full Text
- View/download PDF
5. Lentigines et maladie de Peutz–Jeghers
- Author
-
Palladini, A., primary, Chiaverini, C., additional, Zaafrane, K., additional, Karmous-Benailly, H., additional, Héron, D., additional, Chantot-Bastaraud, S., additional, Coutton, C., additional, and Vieville, G., additional
- Published
- 2020
- Full Text
- View/download PDF
6. Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities
- Author
-
D'Angelo, D., Lebon, S., Chen, Q., Martin-Brevet, S., Snyder, L. G., Hippolyte, L., Hanson, E., Maillard, A. M., Faucett, W. A., Mace, A., Pain, A., Bernier, R., Chawner, S. J. R. A., David, A., Andrieux, J., Aylward, E., Baujat, G., Caldeira, I., Conus, P., Ferrari, C., Forzano, F., Gerard, M., Goin-Kochel, R. P., Grant, E., Hunter, J. V., Isidor, B., Jacquette, A., Jonch, A. E., Keren, B., Lacombe, D., Le Caignec, C., Martin, C. L., Mannik, K., Metspalu, A., Mignot, C., Mukherjee, P., Owen, M. J., Passeggeri, M., Rooryck-Thambo, C., Rosenfeld, J. A., Spence, S. J., Steinman, K. J., Tjernagel, J., Van Haelst, M., Shen, Y., Draganski, B., Sherr, E. H., Ledbetter, D. H., van den Bree, M. B. M., Beckmann, J. S., Spiro, J. E., Reymond, A., Jacquemont, S., Chung, W. K., Knoers, N. V. A. M., Martinet, D., Belfiore, M., Cuvellier, J. -C., Devries, B., Delrue, M. -A., Doco-Fenzy, M., Lebel, R., Leheup, B., Lewis, S., Mencarelli, M. A., Minet, J. -C., Vincent-Delorme, C., Moerman, A., Mucciolo, M., Ounap, K., Rajcan-Separovic, E., Renieri, A., Sanlaville, D., Faas, B. H., Koolen, D. A., Vulto-Van Silfhout, A., de Leeuw, N., Rosanfeld, J. A., Filges, I., Achatz, E., Roetzer, K. M., Bonneau, D., Guichet, A., Lazaro, L., Plessis, G., Kroisel, P. M., Reis, A., Jonveaux, P., Chantot-Bastaraud, S., Rauch, A., Demeer, B., Nordgren, A., Labalme, A., Ferrarini, A., Ramelli, G. P., Guilmatre, A., Joly-Helas, G., Haize, S., Layet, V., Le Gallic, S., de Freminville, B., Touraine, R., Van Binsbergen, E., Mathieu-Dramard, M., Barth, M., Blaumeiser, B., Masurel, A., Cailler, P., Olivier-Faivre, L., Malacarne, M., Coutton, C., Dieterich, K., Satre, V., Wallgren-Pettersson, C., Tensgrom, C., Kaksonen, S., Duban-Bedu, B., Holder, M., Rossi, M., Gaillard, D., Bock, D., Bednarek, N., Guillin, O., Bizzarri, V., Flori, E., Silengo, M., Kooy, R. F., Aboura, A., Beri, M., Delobel, B., Drunat, S., Jaros, Z., Kolk, A., Reigo, A., Zufferey, F., Beckmann, N., Faravelli, F., Alupay, H., Aaronson, B., Ackerman, S., Ankenman, K., Anwar, A., Atwell, C., Bowe, A., Beaudet, A. L., Benedetti, M., Berg, J., Berman, J., Berry, L. N., Bibb, A. L., Blaskey, L., Brennan, J., Brewton, C. M., Buckner, R., Bukshpun, P., Burko, J., Cali, P., Cerban, B., Chang, Y., Cheong, M., Chow, V., Chu, Z., Chudnovskaya, D., Cornew, L., Dale, C., Dell, J., Dempsey, A. G., Deschamps, T., Earl, R., Edgar, J., Elgin, J., Endre, J., Evans, Y. L., Findlay, A., Fischbach, G. D., Fisk, C., Fregeau, B., Gaetz, B., Gaetz, L., Garza, S., Gerdts, J., Glenn, O., Gobuty, S. E., Golembski, R., Greenup, M., Heiken, K., Hines, K., Hinkley, L., Jackson, F. I., Jenkins, J., Jeremy, R. J., Johnson, K., Kanne, S. M., Kessler, S., Khan, S. Y., Ku, M., Kuschner, E., Laakman, A. L., Lam, P., Lasala, M. W., Lee, H., La, K., Levy, S., Lian, A., Llorens, A. V., Loftus, K., Luks, T. L., Marco, E. J., Martin, S., Martin, A. J., Marzano, G., Masson, C., Mcgovern, K. E., Keehn, R. M., Miller, D. T., Miller, F. K., Moss, T. J., Murray, R., Nagarajan, S. S., Nowell, K. P., Owen, J., Paal, A. M., Packer, A., Page, P. Z., Paul, B. M., Peters, A., Peterson, D., Poduri, A., Pojman, N. J., Porche, K., Proud, M. B., Qasmieh, S., Ramocki, M. B., Reilly, B., Roberts, T. P. L., Shaw, D., Sinha, T., Smith, B., Snow, A., Swarnakar, V., Thieu, T., Triantafallou, C., Vaughan, R., Wakahiro, M., Wallace, A., Ward, T., Wenegrat, J., Wolken, A., Blaumeiser, Bettina, Kooy, Frank, Other departments, Cardiff University Experiences of Children With Copy Number Variants (ECHO) Study, 16p11.2 European Consortium, Simons Variation in Individuals Project (VIP) Consortium, Knoers, VA., Martinet, D., Belfiore, M., Cuvellier, JC., de Vries, B., Delrue, MA., Doco-Fenzy, M., Lebel, R., Leheup, B., Lewis, S., Mencarelli, MA., Minet, JC., Vincent-Delorme, C., Moerman, A., Mucciolo, M., Ounap, K., Rajcan-Separovic, E., Renieri, A., Sanlaville, D., Faas, BH., Koolen, DA., Vulto-van Silfhout, A., de Leeuw, N., Rosenfeld, JA., Filges, I., Achatz, E., Roetzer, KM., Bonneau, D., Guichet, A., Lazaro, L., Plessis, G., Kroisel, PM., Reis, A., Jonveaux, P., Chantot-Bastaraud, S., Rauch, A., Demeer, B., Nordgren, A., Labalme, A., Ferrarini, A., Ramelli, GP., Guilmatre, A., Joly-Helas, G., Haize, S., Layet, V., Le Gallic, S., de Fréminville, B., Touraine, R., Van Binsbergen, E., Mathieu-Dramard, M., Barth, M., Blaumeiser, B., Masurel, A., Cailler, P., Olivier-Faivre, L., Malacarne, M., Coutton, C., Dieterich, K., Satre, V., Wallgren-Pettersson, C., Tensgrom, C., Kaksonen, S., Duban-Bedu, B., Holder, M., Rossi, M., Gaillard, D., Bock, D., Bednarek, N., Guillin, O., Bizzarri, V., Flori, E., Silengo, M., Kooy, RF., Aboura, A., Beri, M., Delobel, B., Drunat, S., Jaros, Z., Kolk, A., Reigo, A., Zufferey, F., Beckmann, N., Faravelli, F., Alupay, H., Aaronson, B., Ackerman, S., Ankenman, K., Anwar, A., Atwell, C., Bowe, A., Beaudet, AL., Benedetti, M., Berg, J., Berman, J., Berry, LN., Bibb, AL., Blaskey, L., Brennan, J., Brewton, CM., Buckner, R., Bukshpun, P., Burko, J., Cali, P., Cerban, B., Chang, Y., Cheong, M., Chow, V., Chu, Z., Chudnovskaya, D., Cornew, L., Dale, C., Dell, J., Dempsey, AG., Deschamps, T., Earl, R., Edgar, J., Elgin, J., Olson, JE., Evans, YL., Findlay, A., Fischbach, GD., Fisk, C., Fregeau, B., Gaetz, B., Gaetz, L., Garza, S., Gerdts, J., Glenn, O., Gobuty, SE., Golembski, R., Greenup, M., Heiken, K., Hines, K., Hinkley, L., Jackson, FI., Jenkins J.<Suffix>3rd</Suffix>, Jeremy, RJ., Johnson, K., Kanne, SM., Kessler, S., Khan, SY., Ku, M., Kuschner, E., Laakman, AL., Lam, P., Lasala, MW., Lee, H., LaGuerre, K., Levy, S., Lian Cavanagh, A., Llorens, AV., Loftus Campe, K., Luks, TL., Marco, EJ., Martin, S., Martin, AJ., Marzano, G., Masson, C., McGovern, KE., McNally Keehn, R., Miller, DT., Miller, FK., Moss, TJ., Murray, R., Nagarajan, SS., Nowell, KP., Owen, J., Paal, AM., Packer, A., Page, PZ., Paul, BM., Peters, A., Peterson, D., Poduri, A., Pojman, NJ., Porche, K., Proud, MB., Qasmieh, S., Ramocki, MB., Reilly, B., Roberts, TP., Shaw, D., Sinha, T., Smith-Packard, B., Snow Gallagher, A., Swarnakar, V., Thieu, T., Triantafallou, C., Vaughan, R., Wakahiro, M., Wallace, A., Ward, T., Wenegrat, J., Wolken, A., Human genetics, Amsterdam Neuroscience - Complex Trait Genetics, and Amsterdam Reproduction & Development (AR&D)
- Subjects
Male ,0301 basic medicine ,Proband ,Pediatrics ,Autism Spectrum Disorder ,Developmental Disabilities ,Chromosome Disorders ,Comorbidity ,Nonverbal learning disorder ,Cohort Studies ,Cognition ,0302 clinical medicine ,Cerebellum ,Chromosome Duplication ,Gene duplication ,Copy-number variation ,Non-U.S. Gov't ,Child ,2. Zero hunger ,Intelligence quotient ,Research Support, Non-U.S. Gov't ,Middle Aged ,Psychiatry and Mental health ,Microcephaly ,Female ,Schizophrenic Psychology ,Chromosome Deletion ,Psychology ,Rare cancers Radboud Institute for Health Sciences [Radboudumc 9] ,Human ,Adult ,medicine.medical_specialty ,Adolescent ,DNA Copy Number Variations ,Research Support ,Nervous System Malformations ,Article ,Chromosomes ,Young Adult ,03 medical and health sciences ,Intellectual Disability ,Journal Article ,medicine ,Humans ,Autistic Disorder ,Preschool ,Psychiatry ,Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,Epilepsy ,Pair 16 ,Other Research Radboud Institute for Health Sciences [Radboudumc 0] ,Case-control study ,Autism Spectrum Disorder/epidemiology ,Autism Spectrum Disorder/genetics ,Autistic Disorder/epidemiology ,Autistic Disorder/genetics ,Case-Control Studies ,Cerebellum/abnormalities ,Child, Preschool ,Chromosome Disorders/epidemiology ,Chromosome Disorders/genetics ,Chromosomes, Human, Pair 16/genetics ,Developmental Disabilities/epidemiology ,Developmental Disabilities/genetics ,Epilepsy/epidemiology ,Epilepsy/genetics ,Intellectual Disability/epidemiology ,Intellectual Disability/genetics ,Microcephaly/epidemiology ,Microcephaly/genetics ,Nervous System Malformations/epidemiology ,Nervous System Malformations/genetics ,Schizophrenia/epidemiology ,Schizophrenia/genetics ,medicine.disease ,030104 developmental biology ,Chromosomes, Human, Pair 16 ,Schizophrenia ,Autism ,Human medicine ,030217 neurology & neurosurgery - Abstract
Contains fulltext : 167711.pdf (Publisher’s version ) (Closed access) IMPORTANCE: The 16p11.2 BP4-BP5 duplication is the copy number variant most frequently associated with autism spectrum disorder (ASD), schizophrenia, and comorbidities such as decreased body mass index (BMI). OBJECTIVES: To characterize the effects of the 16p11.2 duplication on cognitive, behavioral, medical, and anthropometric traits and to understand the specificity of these effects by systematically comparing results in duplication carriers and reciprocal deletion carriers, who are also at risk for ASD. DESIGN, SETTING, AND PARTICIPANTS: This international cohort study of 1006 study participants compared 270 duplication carriers with their 102 intrafamilial control individuals, 390 reciprocal deletion carriers, and 244 deletion controls from European and North American cohorts. Data were collected from August 1, 2010, to May 31, 2015 and analyzed from January 1 to August 14, 2015. Linear mixed models were used to estimate the effect of the duplication and deletion on clinical traits by comparison with noncarrier relatives. MAIN OUTCOMES AND MEASURES: Findings on the Full-Scale IQ (FSIQ), Nonverbal IQ, and Verbal IQ; the presence of ASD or other DSM-IV diagnoses; BMI; head circumference; and medical data. RESULTS: Among the 1006 study participants, the duplication was associated with a mean FSIQ score that was lower by 26.3 points between proband carriers and noncarrier relatives and a lower mean FSIQ score (16.2-11.4 points) in nonproband carriers. The mean overall effect of the deletion was similar (-22.1 points; P < .001). However, broad variation in FSIQ was found, with a 19.4- and 2.0-fold increase in the proportion of FSIQ scores that were very low (100) compared with the deletion group (P < .001). Parental FSIQ predicted part of this variation (approximately 36.0% in hereditary probands). Although the frequency of ASD was similar in deletion and duplication proband carriers (16.0% and 20.0%, respectively), the FSIQ was significantly lower (by 26.3 points) in the duplication probands with ASD. There also were lower head circumference and BMI measurements among duplication carriers, which is consistent with the findings of previous studies. CONCLUSIONS AND RELEVANCE: The mean effect of the duplication on cognition is similar to that of the reciprocal deletion, but the variance in the duplication is significantly higher, with severe and mild subgroups not observed with the deletion. These results suggest that additional genetic and familial factors contribute to this variability. Additional studies will be necessary to characterize the predictors of cognitive deficits.
- Published
- 2016
- Full Text
- View/download PDF
7. Whole Genome Sequencing of 9 patients allowed a better understanding of complex chromosomal rearrangements
- Author
-
Girard, F., Jaillard, S., Keren, B., Lespinasse, J., Marle, N., Masurel, A., Mathieu, M., Metay, C., Portnoi, M., Prieur, F., Rio, M., Siffroi, J., Schluth-Bolard, C., Sanlaville, D., Chatron, N., Diguet, F., Rollat-Farnier, P., Uguen, K., Zillhardt, J. Lauer, Sorlin, A., Andrieux, J., Chantot-Bastaraud, S., Callier, P., Cordier, M., Dubourg, C., CHU Pontchaillou [Rennes], Institut de recherche en santé, environnement et travail (Irset), Université d'Angers (UA)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Laboratoire de cytogénétique (CHU de Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), CHU Amiens-Picardie, Hôpital Henri Mondor, Centre Hospitalier Universitaire de Saint-Etienne (CHU de Saint-Etienne), Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Hospices Civils de Lyon (HCL), Hôpital de la Cavale Blanche - CHRU Brest (CHU - BREST ), Equipe GAD (LNC - U1231), Lipides - Nutrition - Cancer [Dijon - U1231] (LNC), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Génétique et Développement de Rennes (IGDR), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Université d'Angers (UA)-Université de Rennes (UR)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Centre Hospitalier Universitaire de Saint-Etienne [CHU Saint-Etienne] (CHU ST-E), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), and Jonchère, Laurent
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
8. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders
- Author
-
Wolff, M. (Markus), Johannesen, K.M. (Katrine M.), Hedrich, U.B.S. (Ulrike B. S.), Masnada, S. (Silvia), Rubboli, G. (Guido), Gardella, E. (Elena), Lesca, G. (Gaetan), Ville, D. (Dorothée), Milh, M. (Mathieu), Villard, L. (Laurent), Afenjar, A. (Alexandra), Chantot-Bastaraud, S. (Sandra), Mignot, A., Lardennois, C. (Caroline), Nava, C. (Caroline), Schwarz, N. (Niklas), Gérard, M. (Marion), Perrin, L. (Laurence), Doummar, D. (Diane), Auvin, S. (Stéphane), Miranda, M.J. (Maria J.), Hempel, M. (Maja), Brilstra, E. (Eva), Knoers, N.V.A.M. (Nine), Verbeek, N.E. (Nienke), Kempen, M.J.A. (M. J A) van, Braun, K.P. (Kees P.), Mancini, G.M.S. (Grazia), Biskup, S. (Saskia), Hörtnagel, K. (Konstanze), Döcker, M. (Miriam), Bast, T. (Thomas), Loddenkemper, T. (Tobias), Wong-Kisiel, L. (Lily), Baumeister, F.M. (Friedrich M.), Fazeli, W. (Walid), Striano, P. (Pasquale), Dilena, R. (Robertino), Fontana, E. (Elena), Zara, F. (Federico), Kurlemann, G. (Gerhard), Klepper, J. (Joerg), Thoene, J.G. (Jess G.), Arndt, D.H. (Daniel H.), Deconinck, N. (Nicolas), Schmitt-Mechelke, T. (Thomas), Maier, O. (Oliver), Muhle, H. (Hiltrud), Wical, B. (Beverly), Finetti, C. (Claudio), Brückner, R. (Reinhard), Pietz, J. (Joachim), Golla, G. (Günther), Jillella, D. (Dinesh), Linnet, K.M. (Karen M.), Charles, P. (Perrine), Moog, U. (Ute), Õiglane-Shlik, E. (Eve), Mantovani, J.F. (John F.), Park, K. (Kristen), Deprez, M. (Marie), Lederer, D. (Damien), Mary, S. (Sandrine), Scalais, E. (Emmanuel), Selim, L. (Laila), Coster, R.N.A. (R. N A) van, Lagae, L. (Lieven), Nikanorova, M. (Marina), Hjalgrim, H. (Helle), Korenke, G.C. (Christoph), Trivisano, M. (Marina), Specchio, N. (Nicola), Ceulemans, B. (Berten), Dorn, T. (Thomas), Helbig, K.L. (Katherine L.), Hardies, K. (K.), Stamberger, H. (Hannah), Jonghe, P. (P.) de, Weckhuysen, S. (Sarah), Lemke, J.R. (Johannes R.), Krägeloh-Mann, I. (Ingeborg), Helbig, I. (Ingo), Kluger, G. (Gerhard), Lerche, H. (Holger), Møller, R.S. (Rikke), Wolff, M. (Markus), Johannesen, K.M. (Katrine M.), Hedrich, U.B.S. (Ulrike B. S.), Masnada, S. (Silvia), Rubboli, G. (Guido), Gardella, E. (Elena), Lesca, G. (Gaetan), Ville, D. (Dorothée), Milh, M. (Mathieu), Villard, L. (Laurent), Afenjar, A. (Alexandra), Chantot-Bastaraud, S. (Sandra), Mignot, A., Lardennois, C. (Caroline), Nava, C. (Caroline), Schwarz, N. (Niklas), Gérard, M. (Marion), Perrin, L. (Laurence), Doummar, D. (Diane), Auvin, S. (Stéphane), Miranda, M.J. (Maria J.), Hempel, M. (Maja), Brilstra, E. (Eva), Knoers, N.V.A.M. (Nine), Verbeek, N.E. (Nienke), Kempen, M.J.A. (M. J A) van, Braun, K.P. (Kees P.), Mancini, G.M.S. (Grazia), Biskup, S. (Saskia), Hörtnagel, K. (Konstanze), Döcker, M. (Miriam), Bast, T. (Thomas), Loddenkemper, T. (Tobias), Wong-Kisiel, L. (Lily), Baumeister, F.M. (Friedrich M.), Fazeli, W. (Walid), Striano, P. (Pasquale), Dilena, R. (Robertino), Fontana, E. (Elena), Zara, F. (Federico), Kurlemann, G. (Gerhard), Klepper, J. (Joerg), Thoene, J.G. (Jess G.), Arndt, D.H. (Daniel H.), Deconinck, N. (Nicolas), Schmitt-Mechelke, T. (Thomas), Maier, O. (Oliver), Muhle, H. (Hiltrud), Wical, B. (Beverly), Finetti, C. (Claudio), Brückner, R. (Reinhard), Pietz, J. (Joachim), Golla, G. (Günther), Jillella, D. (Dinesh), Linnet, K.M. (Karen M.), Charles, P. (Perrine), Moog, U. (Ute), Õiglane-Shlik, E. (Eve), Mantovani, J.F. (John F.), Park, K. (Kristen), Deprez, M. (Marie), Lederer, D. (Damien), Mary, S. (Sandrine), Scalais, E. (Emmanuel), Selim, L. (Laila), Coster, R.N.A. (R. N A) van, Lagae, L. (Lieven), Nikanorova, M. (Marina), Hjalgrim, H. (Helle), Korenke, G.C. (Christoph), Trivisano, M. (Marina), Specchio, N. (Nicola), Ceulemans, B. (Berten), Dorn, T. (Thomas), Helbig, K.L. (Katherine L.), Hardies, K. (K.), Stamberger, H. (Hannah), Jonghe, P. (P.) de, Weckhuysen, S. (Sarah), Lemke, J.R. (Johannes R.), Krägeloh-Mann, I. (Ingeborg), Helbig, I. (Ingo), Kluger, G. (Gerhard), Lerche, H. (Holger), and Møller, R.S. (Rikke)
- Abstract
Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatme
- Published
- 2017
- Full Text
- View/download PDF
9. Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU
- Author
-
Depienne, C, Nava, C, Keren, B, Heide, S, Rastetter, A, Passemard, S, Chantot-Bastaraud, S, Moutard, M-L, Agrawal, PB, VanNoy, G, Stoler, JM, Amor, DJ, de Villemeur, TB, Doummar, D, Alby, C, Cormier-Daire, V, Garel, C, Marzin, P, Scheidecker, S, de Saint-Martin, A, Hirsch, E, Korff, C, Bottani, A, Faivre, L, Verloes, A, Orzechowski, C, Burglen, L, Leheup, B, Roume, J, Andrieux, J, Sheth, F, Datar, C, Parker, MJ, Pasquier, L, Odent, S, Naudion, S, Delrue, M-A, Le Caignec, C, Vincent, M, Isidor, B, Renaldo, F, Stewart, F, Toutain, A, Koehler, U, Hackl, B, von Stulpnagel, C, Kluger, G, Moller, RS, Pal, D, Jonson, T, Soller, M, Verbeek, NE, van Haelst, MM, de Kovel, C, Koeleman, B, Monroe, G, van Haaften, G, Study, DDD, Attie-Bitach, T, Boutaud, L, Heron, D, Mignot, C, Depienne, C, Nava, C, Keren, B, Heide, S, Rastetter, A, Passemard, S, Chantot-Bastaraud, S, Moutard, M-L, Agrawal, PB, VanNoy, G, Stoler, JM, Amor, DJ, de Villemeur, TB, Doummar, D, Alby, C, Cormier-Daire, V, Garel, C, Marzin, P, Scheidecker, S, de Saint-Martin, A, Hirsch, E, Korff, C, Bottani, A, Faivre, L, Verloes, A, Orzechowski, C, Burglen, L, Leheup, B, Roume, J, Andrieux, J, Sheth, F, Datar, C, Parker, MJ, Pasquier, L, Odent, S, Naudion, S, Delrue, M-A, Le Caignec, C, Vincent, M, Isidor, B, Renaldo, F, Stewart, F, Toutain, A, Koehler, U, Hackl, B, von Stulpnagel, C, Kluger, G, Moller, RS, Pal, D, Jonson, T, Soller, M, Verbeek, NE, van Haelst, MM, de Kovel, C, Koeleman, B, Monroe, G, van Haaften, G, Study, DDD, Attie-Bitach, T, Boutaud, L, Heron, D, and Mignot, C
- Abstract
Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, and review additional data from 37 previously published patients with 1q43q44 microdeletions. We compare clinical data of patients with 1q43q44 microdeletions with those of patients with point mutations in HNRNPU and ZBTB18 to assess the contribution of each gene as well as the possibility of epistasis between genes. Our study demonstrates that AKT3 haploinsufficiency is the main driver for microcephaly, whereas HNRNPU alteration mostly drives epilepsy and determines the degree of intellectual disability. ZBTB18 deletions or mutations are associated with variable corpus callosum anomalies with an incomplete penetrance. ZBTB18 may also contribute to microcephaly and HNRNPU to thin corpus callosum, but with a lower penetrance. Co-deletion of contiguous genes has additive effects. Our results confirm and refine the complex genotype-phenotype correlations existing in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of AKT3, ZBTB18 and HNRNPU in humans.
- Published
- 2017
10. New insights in genetic diagnosis of congenital/very early-onset ataxia using new-generation sequencing
- Author
-
Burglen, L., primary, Haye, D., additional, Valence, S., additional, Afenjar, A., additional, Chantot-Bastaraud, S., additional, Rougeot, C., additional, Riquet, A., additional, Garel, C., additional, and Rodriguez, D., additional
- Published
- 2017
- Full Text
- View/download PDF
11. Xq28 duplication includingMECP2in six unreported affected females: what can we learn for diagnosis and genetic counselling?
- Author
-
El Chehadeh, S., primary, Touraine, R., additional, Prieur, F., additional, Reardon, W., additional, Bienvenu, T., additional, Chantot-Bastaraud, S., additional, Doco-Fenzy, M., additional, Landais, E., additional, Philippe, C., additional, Marle, N., additional, Callier, P., additional, Mosca-Boidron, A.-L., additional, Mugneret, F., additional, Le Meur, N., additional, Goldenberg, A., additional, Guerrot, A.-M., additional, Chambon, P., additional, Satre, V., additional, Coutton, C., additional, Jouk, P.-S., additional, Devillard, F., additional, Dieterich, K., additional, Afenjar, A., additional, Burglen, L., additional, Moutard, M.-L., additional, Addor, M.-C., additional, Lebon, S., additional, Martinet, D., additional, Alessandri, J.-L., additional, Doray, B., additional, Miguet, M., additional, Devys, D., additional, Saugier-Veber, P., additional, Drunat, S., additional, Aral, B., additional, Kremer, V., additional, Rondeau, S., additional, Tabet, A.-C., additional, Thevenon, J., additional, Thauvin-Robinet, C., additional, Perreton, N., additional, Des Portes, V., additional, and Faivre, L., additional
- Published
- 2017
- Full Text
- View/download PDF
12. Causes rares d’anomalies de l’empreinte parentale entraînant un retard de croissance à début intra-utérin (RCIU)
- Author
-
Pham, A., primary, Chantot-Bastaraud, S., additional, Siffroi, J.-P., additional, Mitanchez, D., additional, and Netchine, I., additional
- Published
- 2016
- Full Text
- View/download PDF
13. Deletion ofCPEB1Gene: A Rare but Recurrent Cause of Premature Ovarian Insufficiency
- Author
-
Hyon, C., primary, Mansour-Hendili, L., additional, Chantot-Bastaraud, S., additional, Donadille, B., additional, Kerlan, V., additional, Dodé, C., additional, Jonard, S., additional, Delemer, B., additional, Gompel, A., additional, Reznik, Y., additional, Touraine, P., additional, Siffroi, J. P., additional, and Christin-Maitre, S., additional
- Published
- 2016
- Full Text
- View/download PDF
14. Xq28 duplication including MECP2 in six unreported affected females: what can we learn for diagnosis and genetic counselling?
- Author
-
El Chehadeh, S., Touraine, R., Prieur, F., Reardon, W., Bienvenu, T., Chantot ‐ Bastaraud, S., Doco ‐ Fenzy, M., Landais, E., Philippe, C., Marle, N., Callier, P., Mosca ‐ Boidron, A. ‐ L., Mugneret, F., Le Meur, N., Goldenberg, A., Guerrot, A. ‐ M., Chambon, P., Satre, V., Coutton, C., and Jouk, P. ‐ S.
- Subjects
X chromosome ,GENETIC correlations ,PHENOTYPES ,SPASTICITY ,EPILEPSY - Abstract
Duplication of the Xq28 region, involving MECP2 (dupMECP2), has been primarily described in males with severe developmental delay, spasticity, epilepsy, stereotyped movements and recurrent infections. Carrier mothers are usually asymptomatic with an extremely skewed X chromosome inactivation (XCI) pattern. We report a series of six novel symptomatic females carrying a de novo interstitial dupMECP2, and review the 14 symptomatic females reported to date, with the aim to further delineate their phenotype and give clues for genetic counselling. One patient was adopted and among the other 19 patients, seven (37%) had inherited their duplication from their mother, including three mildly (XCI: 70/30, 63/37, 100/0 in blood and random in saliva), one moderately (XCI: random) and three severely (XCI: uninformative and 88/12) affected patients. After combining our data with data from the literature, we could not show a correlation between XCI in the blood or duplication size and the severity of the phenotype, or explain the presence of a phenotype in these females. These findings confirm that an abnormal phenotype, even severe, can be a rare event in females born to asymptomatic carrier mothers, making genetic counselling difficult in couples at risk in terms of prognosis, in particular in prenatal cases. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
15. Deletion of CPEB1Gene: A Rare but Recurrent Cause of Premature Ovarian Insufficiency
- Author
-
Hyon, C., Mansour-Hendili, L., Chantot-Bastaraud, S., Donadille, B., Kerlan, V., Dodé, C., Jonard, S., Delemer, B., Gompel, A., Reznik, Y., Touraine, P., Siffroi, J. P., and Christin-Maitre, S.
- Abstract
Context:Premature ovarian insufficiency (POI) may be secondary to chemotherapy, radiotherapy, or environmental factors. Genetic causes are identified in 20–25% of cases, but most POI cases remain idiopathic.Objective:This study aimed to identify new genes involved in POI and to characterize the implication of CPEB1gene in POI.Design and Setting:This was a case report and cohort study replicate conducted in academic medical centers.Patients and Methods:A deletion including CPEB1gene was first identified in a patient with primary amenorrhea. Secondly, 191 sporadic POI cases and 68 familial POI cases were included. For each patient, karyotype was normal and FMR1premutation was excluded. Search for CPEB1deletions was performed by quantitative multiplex PCR of short fluorescent fragments or DNA microarray analysis. Gene sequencing of CPEB1was performed for 95 patients.Results:We identified three patients carrying a microdeletion in band 15q25.2. The proximal breakpoint, for the three patients, falls within a low-copy repeat region disrupting the CPEB1gene, which represents a strong candidate gene for POI as it is known to be implicated in oocyte meiosis. No mutation was identified by sequencing CPEB1gene. Therefore, heterozygous deletion of CPEB1gene leading to haploinsufficiency could be responsible for POI in humans.Conclusion:Microdeletions of CPEB1were identified in 1.3% of patients with POI, whereas no mutation was identified. This microdeletion is rare but recurrent as it is mediated by nonallelic homologous recombination due to the existence of low-copy repeats in the region. This result demonstrates the importance of DNA microarray analysis in etiological evaluation and counseling of patients with POI.
- Published
- 2016
- Full Text
- View/download PDF
16. Variants in UBAP1L lead to autosomal recessive rod-cone and cone-rod dystrophy.
- Author
-
Zeitz C, Navarro J, Azizzadeh Pormehr L, Méjécase C, Neves LM, Letellier C, Condroyer C, Albadri S, Amprou A, Antonio A, Ben-Yacoub T, Wohlschlegel J, Andrieu C, Serafini M, Bianco L, Antropoli A, Nassisi M, El Shamieh S, Chantot-Bastaraud S, Mohand-Saïd S, Smirnov V, Sahel JA, Del Bene F, and Audo I
- Subjects
- Adult, Animals, Female, Humans, Male, Adaptor Proteins, Signal Transducing genetics, Adaptor Proteins, Signal Transducing metabolism, Genes, Recessive, Mutation genetics, Phenotype, Retina pathology, Retina metabolism, Retinal Cone Photoreceptor Cells pathology, Retinal Cone Photoreceptor Cells metabolism, Retinal Pigment Epithelium metabolism, Retinal Pigment Epithelium pathology, Retinal Rod Photoreceptor Cells metabolism, Retinal Rod Photoreceptor Cells pathology, Retinitis Pigmentosa genetics, Retinitis Pigmentosa pathology, Tunisia, Cone-Rod Dystrophies genetics, Cone-Rod Dystrophies pathology, Pedigree, Zebrafish genetics
- Abstract
Purpose: Progressive inherited retinal degenerations (IRDs) affecting rods and cones are clinically and genetically heterogeneous and can lead to blindness with limited therapeutic options. The major gene defects have been identified in subjects of European and Asian descent with only few reports of North African descent., Methods: Genome, targeted next-generation, and Sanger sequencing was applied to cohort of ∼4000 IRDs cases. Expression analyses were performed including Chip-seq database analyses, on human-derived retinal organoids (ROs), retinal pigment epithelium cells, and zebrafish. Variants' pathogenicity was accessed using 3D-modeling and/or ROs., Results: Here, we identified a novel gene defect with three distinct pathogenic variants in UBAP1L in 4 independent autosomal recessive IRD cases from Tunisia. UBAP1L is expressed in the retinal pigment epithelium and retina, specifically in rods and cones, in line with the phenotype. It encodes Ubiquitin-associated protein 1-like, containing a solenoid of overlapping ubiquitin-associated domain, predicted to interact with ubiquitin. In silico and in vitro studies, including 3D-modeling and ROs revealed that the solenoid of overlapping ubiquitin-associated domain is truncated and thus ubiquitin binding most likely abolished secondary to all variants identified herein., Conclusion: Biallelic UBAP1L variants are a novel cause of IRDs, most likely enriched in the North African population., Competing Interests: Conflict of Interest The authors declare no conflicts of interest., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
17. Skewed X-chromosome inactivation drives the proportion of DNAAF6 -defective airway motile cilia and variable expressivity in primary ciliary dyskinesia.
- Author
-
Thomas L, Cuisset L, Papon JF, Tamalet A, Pin I, Abou Taam R, Faucon C, Montantin G, Tissier S, Duquesnoy P, Dastot-Le Moal F, Copin B, Carion N, Louis B, Chantot-Bastaraud S, Siffroi JP, Mitri R, Coste A, Escudier E, Thouvenin G, Amselem S, and Legendre M
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Female, Humans, Male, Ciliary Motility Disorders genetics, Ciliary Motility Disorders pathology, DNA Methylation genetics, Dyneins genetics, Kartagener Syndrome genetics, Kartagener Syndrome pathology, Mutation, Phenotype, Cilia pathology, Cilia genetics, X Chromosome Inactivation genetics
- Abstract
Background: Primary ciliary dyskinesia (PCD) is a rare airway disorder caused by defective motile cilia. Only male patients have been reported with pathogenic mutations in X-linked DNAAF6 , which result in the absence of ciliary dynein arms, whereas their heterozygous mothers are supposedly healthy. Our objective was to assess the possible clinical and ciliary consequences of X-chromosome inactivation (XCI) in these mothers., Methods: XCI patterns of six mothers of male patients with DNAAF6 -related PCD were determined by DNA-methylation studies and compared with their clinical phenotype (6/6 mothers), as well as their ciliary phenotype (4/6 mothers), as assessed by immunofluorescence and high-speed videomicroscopy analyses. The mutated X chromosome was tracked to assess the percentage of cells with a normal inactivated DNAAF6 allele., Results: The mothers' phenotypes ranged from absence of symptoms to mild/moderate or severe airway phenotypes, closely reflecting their XCI pattern. Analyses of the symptomatic mothers' airway ciliated cells revealed the coexistence of normal cells and cells with immotile cilia lacking dynein arms, whose ratio closely mirrored their XCI pattern., Conclusion: This study highlights the importance of searching for heterozygous pathogenic DNAAF6 mutations in all female relatives of male PCD patients with a DNAAF6 defect, as well as in females consulting for mild chronic respiratory symptoms. Our results also demonstrate that about one-third-ranging from 20% to 50%-normal ciliated airway cells sufficed to avoid severe PCD, a result paving the way for gene therapy., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2024
- Full Text
- View/download PDF
18. First reports of fetal SMARCC1 related hydrocephalus.
- Author
-
Rive Le Gouard N, Nicolle R, Lefebvre M, Gelot A, Heide S, Gerasimenko A, Grigorescu R, Derive N, Jouannic JM, Garel C, Valence S, Quenum-Miraillet G, Chantot-Bastaraud S, Keren B, Heron D, and Attie-Bitach T
- Subjects
- Humans, Fetus, Genetic Counseling, Transcription Factors genetics, Hydrocephalus diagnostic imaging, Hydrocephalus genetics
- Abstract
The SMARCC1 gene has been involved in congenital ventriculomegaly with aqueduct stenosis but only a few patients have been reported so far, with no antenatal cases, and it is currently not annotated as a morbid gene in OMIM nor in the Human Phenotype Ontology. Most of the reported variants are loss of function (LoF) and are often inherited from unaffected parents. SMARCC1 encodes a subunit of the mSWI/SNF complex and affects the chromatin structure and expression of several genes. Here, we report the two first antenatal cases of SMARCC1 LoF variants detected by Whole Genome Sequencing (WGS). Ventriculomegaly is the common feature in those fetuses. Both identified variants are inherited from a healthy parent, which supports the reported incomplete penetrance of this gene. This makes the identification of this condition in WGS as well as the genetic counseling challenging., Competing Interests: Declaration of competing interest The authors declare no potential conflict of interest., (Copyright © 2023 Elsevier Masson SAS. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
19. How a paternal uniparental isodisomy of chromosome 17 leads to autosomal recessive limb-girdle muscular dystrophy R3.
- Author
-
Verebi C, Caumes R, Chantot-Bastaraud S, Deburgrave N, Orhant L, Vaucouleur N, Cuisset L, Bienvenu T, Leturcq F, and Nectoux J
- Subjects
- Male, Humans, Child, Chromosomes, Human, Pair 17 genetics, Sarcoglycans genetics, Fathers, Uniparental Disomy genetics, Muscular Dystrophies, Limb-Girdle genetics
- Abstract
Uniparental isodisomy is a condition where both chromosomes of a pair are inherited from one parental homologue. If a deleterious variant is present on the duplicated chromosome, its homozygosity can reveal an autosomal recessive disorder in the offspring of a heterozygous carrier. Limb-girdle muscular dystrophy (LGMD) R3 is an autosomal recessive inherited disease that is associated with alpha-sarcoglycan gene (SGCA) variants. We report the first published case of LGMDR3 due to a homozygous variant in SGCA unmasked by uniparental isodisomy. The patient is an 8-year-old who experienced delayed motor milestones but normal cognitive development. He presented with muscle pain and elevated plasma creatine kinase. Sequencing of the SGCA gene showed a homozygous pathogenic variant. Parents were not related and only the father was heterozygous for the pathogenic variant. A chromosomal microarray revealed a complete chromosome 17 copy number neutral loss of heterozygosity encompassing SGCA, indicating paternal uniparental isodisomy., Competing Interests: Declaration of Competing Interest None of the authors have any conflict of interest to disclose., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
20. Unraveling a case of 46,XY DSD due to 17ß-Hydroxysteroid Dehydrogenase type 3 mutations at the age of 49.
- Author
-
Garcia A, Legendre M, Chantot-Bastaraud S, Siffroi JP, and Christin-Maitre S
- Subjects
- Male, Female, Humans, Mutation, 17-Hydroxysteroid Dehydrogenases genetics, Testosterone, Disorder of Sex Development, 46,XY genetics, Intellectual Disability genetics
- Abstract
17-ß Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is an enzyme transforming Delta 4 androstenedione into testosterone. It is involved in the early development of the male genital tract. In this case report, we describe a 46,XY Difference of Sexual Development (DSD) individual with a female phenotype, primary amenorrhea, facial dysmorphia and mental retardation. Gene sequencing using a panel of genes involved in DSD revealed two heterozygous loss-of-function mutations in the HSD17B3 enzyme. Furthermore, a microarray analysis revealed a 37Mb segmental 3p duplication and a recurrent 16p13.11 microduplication. The large 3p duplication is responsible for her mental retardation and her facial dysmorphia. Interestingly, HSD17B3 mutations were identified only in adulthood, at the age of 49. Furthermore, the patient's severe mental retardation and facial dysmorphia are due to genetic abnormalities different from the ones involved in her DSD., (Copyright © 2022 Elsevier Masson SAS. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
21. 1p36 deletion syndrome: Review and mapping with further characterization of the phenotype, a new cohort of 86 patients.
- Author
-
Jacquin C, Landais E, Poirsier C, Afenjar A, Akhavi A, Bednarek N, Bénech C, Bonnard A, Bosquet D, Burglen L, Callier P, Chantot-Bastaraud S, Coubes C, Coutton C, Delobel B, Descharmes M, Dupont JM, Gatinois V, Gruchy N, Guterman S, Heddar A, Herissant L, Heron D, Isidor B, Jaeger P, Jouret G, Keren B, Kuentz P, Le Caignec C, Levy J, Lopez N, Manssens Z, Martin-Coignard D, Marey I, Mignot C, Missirian C, Pebrel-Richard C, Pinson L, Puechberty J, Redon S, Sanlaville D, Spodenkiewicz M, Tabet AC, Verloes A, Vieville G, Yardin C, Vialard F, and Doco-Fenzy M
- Subjects
- Humans, Chromosomes, Human, Pair 1, Muscle Hypotonia, Chromosome Deletion, Phenotype, Down Syndrome, DiGeorge Syndrome, Intellectual Disability, Microcephaly, Epilepsy
- Abstract
Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients., (© 2022 The Authors. American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.)
- Published
- 2023
- Full Text
- View/download PDF
22. RNF213-associated urticarial lesions with hypercytokinemia.
- Author
-
Louvrier C, Awad F, Cosnes A, El Khouri E, Assrawi E, Daskalopoulou A, Copin B, Bocquet H, Chantot Bastaraud S, Arenas Garcia A, Dastot Le Moal F, De La Grange P, Duquesnoy P, Guerrera CI, Piterboth W, Ortonne N, Chosidow O, Karabina SA, Amselem S, and Giurgea I
- Subjects
- Humans, Proteomics, Cytokine Release Syndrome
- Abstract
Background: Urticarial lesions are observed in both cutaneous and systemic disorders. Familial forms of urticarial syndromes are rare and can be encountered in systemic autoinflammatory diseases., Objective: We sought to investigate a large family with dominantly inherited chronic urticarial lesions associated with hypercytokinemia., Methods: We performed a genetic linkage analysis in 14 patients from a 5-generation family, as well as whole-exome sequencing, cytokine profiling, and transcriptomic analyses on samples from 2 patients. The identified candidate protein was studied after in vitro expression of the corresponding normal and mutated recombinant proteins. An unsupervised proteomic approach was used to unveil the associated protein network., Results: The disease phenotype of the most affected family members is characterized by chronic urticarial flares associated with extremely high plasma levels of proinflammatory (IL-1β, IL-6, and TNF-α) and anti-inflammatory (IL-10 and IL-1 receptor antagonist [IL-1RA]) cytokines, with no secondary organ dysfunction, no susceptibility to infections, no fever, and normal C-reactive protein levels. Monocyte transcriptomic analyses identified an immunotolerant profile in the most affected patient. The affected family members carried a loss-of-function mutation in RNF213 that encodes mysterin, a protein with a poorly known physiologic role. We identified the deubiquitinase CYLD, a major regulator of inflammation, as an RNF213 partner and showed that CYLD expression is inhibited by wild-type but not mutant RNF213., Conclusion: We identified a new entity characterized by chronic urticarial lesions associated with a clinically blunted hypercytokinemia. This disease, which is due to loss of function of RNF213, reveals mysterin's key role in the complex molecular network of innate immunity., (Copyright © 2022 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
23. Understanding the new BRD4-related syndrome: Clinical and genomic delineation with an international cohort study.
- Author
-
Jouret G, Heide S, Sorlin A, Faivre L, Chantot-Bastaraud S, Beneteau C, Denis-Musquer M, Turnpenny PD, Coutton C, Vieville G, Thevenon J, Larson A, Petit F, Boudry E, Smol T, Delobel B, Duban-Bedu B, Fallerini C, Mari F, Lo Rizzo C, Renieri A, Caberg JH, Denommé-Pichon AS, Tran Mau-Them F, Maystadt I, Courtin T, Keren B, Mouthon L, Charles P, Cuinat S, Isidor B, Theis P, Müller C, Kulisic M, Türkmen S, Stieber D, Bourgeois D, Scalais E, and Klink B
- Subjects
- Cell Cycle Proteins genetics, Child, Female, Genomics, Humans, Mutation, Phenotype, Pregnancy, Transcription Factors genetics, De Lange Syndrome diagnosis, De Lange Syndrome genetics, De Lange Syndrome pathology, Nuclear Proteins genetics
- Abstract
BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies., (© 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
24. Whole exome sequencing in a cohort of familial premature ovarian insufficiency cases reveals a broad array of pathogenic or likely pathogenic variants in 50% of families.
- Author
-
Rouen A, Rogers E, Kerlan V, Delemer B, Catteau-Jonard S, Reznik Y, Gompel A, Cedrin I, Guedj AM, Grouthier V, Brue T, Pienkowski C, Bachelot A, Chantot-Bastaraud S, Rousseau A, Simon T, Kott E, Siffroi JP, Touraine P, and Christin-Maitre S
- Subjects
- Cohort Studies, Cross-Sectional Studies, Female, Fragile X Mental Retardation Protein genetics, Humans, Exome Sequencing, Menopause, Premature genetics, Primary Ovarian Insufficiency diagnosis, Primary Ovarian Insufficiency genetics
- Abstract
Objective: To study the diagnostic yield, including variants in genes yet to be incriminated, of whole exome sequencing (WES) in familial cases of premature ovarian insufficiency (POI)., Design: Cross-sectional study., Setting: Endocrinology and reproductive medicine teaching hospital departments., Patients: Familial POI cases were recruited as part of a nationwide multicentric cohort. A total of 36 index cases in 36 different families were studied. Fifty-two relatives were available, including 25 with POI and 27 affected who were nonaffected. Karyotype analysis, FMR1 screening, single nucleotide polymorphism array analysis, and WES were performed in all subjects., Interventions: None., Main Outcome Measures: The primary outcome was a molecular etiology, as diagnosed by karyotype, FMR1 screening, single nucleotide polymorphism array, and WES., Results: A likely molecular etiology (pathogenic or likely pathogenic variant) was identified in 18 of 36 index cases (50% diagnostic yield). In 12 families, we found a pathogenic or likely pathogenic variant in a gene previously incriminated in POI, and in 6 families, we found a pathogenic or likely pathogenic variant in new candidate genes. Most of the variants identified were located in genes involved in cell division and meiosis (n = 11) or DNA repair (n = 4)., Conclusions: The genetic etiologic diagnosis in POI allows for genetic familial counseling, anticipated pregnancy planning, and ovarian tissue preservation or oocyte preservation. Identifying new genes may lead to future development of therapeutics in reproduction based on disrupted molecular pathways., Clinical Trial Registration Number: NCT 01177891., (Copyright © 2021 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
25. Neurodevelopmental phenotype in 36 new patients with 8p inverted duplication-deletion: Genotype-phenotype correlation for anomalies of the corpus callosum.
- Author
-
Vibert R, Mignot C, Keren B, Chantot-Bastaraud S, Portnoï MF, Nouguès MC, Moutard ML, Faudet A, Whalen S, Haye D, Garel C, Chatron N, Rossi M, Vincent-Delorme C, Boute O, Delobel B, Andrieux J, Devillard F, Coutton C, Puechberty J, Pebrel-Richard C, Colson C, Gerard M, Missirian C, Sigaudy S, Busa T, Doco-Fenzy M, Malan V, Rio M, Doray B, Sanlaville D, Siffroi JP, Héron D, and Heide S
- Subjects
- Chromosome Deletion, Chromosome Inversion, Chromosomes, Human, Pair 8, Corpus Callosum diagnostic imaging, Genetic Association Studies, Humans, Phenotype, Trisomy, Intellectual Disability diagnostic imaging, Intellectual Disability genetics, Leukoencephalopathies genetics
- Abstract
Inverted duplication deletion 8p [invdupdel(8p)] is a complex and rare chromosomal rearrangement that combines a distal deletion and an inverted interstitial duplication of the short arm of chromosome 8. Carrier patients usually have developmental delay and intellectual disability (ID), associated with various cerebral and extra-cerebral malformations. Invdupdel(8p) is the most common recurrent chromosomal rearrangement in ID patients with anomalies of the corpus callosum (AnCC). Only a minority of invdupdel(8p) cases reported in the literature to date had both brain cerebral imaging and chromosomal microarray (CMA) with precise breakpoints of the rearrangements, making genotype-phenotype correlation studies for AnCC difficult. In this study, we report the clinical, radiological, and molecular data from 36 new invdupdel(8p) cases including three fetuses and five individuals from the same family, with breakpoints characterized by CMA. Among those, 97% (n = 32/33) of patients presented with mild to severe developmental delay/ID and 34% had seizures with mean age of onset of 3.9 years (2 months-9 years). Moreover, out of the 24 patients with brain MRI and 3 fetuses with neuropathology analysis, 63% (n = 17/27) had AnCC. We review additional data from 99 previously published patients with invdupdel(8p) and compare data of 17 patients from the literature with both CMA analysis and brain imaging to refine genotype-phenotype correlations for AnCC. This led us to refine a region of 5.1 Mb common to duplications of patients with AnCC and discuss potential candidate genes within this region., (© 2021 John Wiley & Sons A/S . Published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
26. The clinical course of interstitial lung disease in an adult patient with an ABCA3 homozygous complex allele under hydroxychloroquine and a review of the literature.
- Author
-
Legendre M, Darde X, Ferreira M, Chantot-Bastaraud S, Campana M, Plantier L, Nathan N, Amselem S, Toutain A, Diot P, and Marchand-Adam S
- Abstract
Objective: The gene mutations responsible for ABCA3 protein deficiency are involved in respiratory distress of the newborn and much more rarely in adult interstitial lung diseases (ILD). An adult patient homozygous for a complex allele encompassing the p.Ala1027Pro likely pathogenic mutation and the p.Gly974Asp variation was followed for a late-onset and fibrotic ILD. The evolution was marked by progressive clinical and functional degradation despite corticosteroid pulses. The patient, who was first registered on the list for lung transplantation, was improved quickly and persistently for at least 6.5 years with hydroxychloroquine treatment, allowing removal from the transplant list., Competing Interests: Each author declares that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangement etc.) that might pose a conflict of interest in connection with the submitted article.
- Published
- 2022
- Full Text
- View/download PDF
27. Silver Russell syndrome in a preterm girl with 8q12.1 deletion encompassing PLAG1.
- Author
-
Fernández-Fructuoso JR, De la Torre-Sandoval C, Harbison MD, Chantot-Bastaraud S, Temple K, Lloreda-Garcia JM, Olmo-Sanchez M, and Netchine I
- Subjects
- DNA-Binding Proteins genetics, Female, Humans, Phenotype, Transcription Factors genetics, Silver-Russell Syndrome diagnosis, Silver-Russell Syndrome genetics
- Abstract
Silver Russell syndrome (SRS) is a congenital disorder characterized by intrauterine growth retardation (IUGR), feeding difficulties and postnatal growth retardation. In a small number of cases, PLAG1 variants have been described (OMIM #618907). PLAG1 haploinsufficiency decreases Insulin-like growth factor 2 expression and produces a Silver Russell syndrome-like phenotype. Here, we describe the phenotype and molecular features of a 26 months girl with clinical features of SRS, and a de novo 2.1 Mb deletion encompassing PLAG1 is reported in association with clinical features suggestive of SRS., (Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
28. Recurrence of an early postzygotic rescue of an inherited unbalanced translocation resulting in mosaic segmental uniparental isodisomy of chromosome 11q in siblings.
- Author
-
Blanluet M, Chantot-Bastaraud S, Chambon P, Cassinari K, Vera G, Goldenberg A, Keren B, Le Meur N, Hannequin D, Mace B, Siffroi JP, Frebourg T, Nicolas G, and Joly-Helas G
- Subjects
- Abnormalities, Multiple pathology, Cervical Vertebrae pathology, Chromosome Banding, Chromosome Deletion, Chromosomes genetics, Chromosomes, Human, Pair 11 genetics, Chromosomes, Human, Pair 2 genetics, Female, Genetic Predisposition to Disease, Humans, In Situ Hybridization, Fluorescence, Intellectual Disability pathology, Karyotyping, Kyphosis pathology, Male, Mosaicism, Scoliosis pathology, Siblings, Translocation, Genetic genetics, Abnormalities, Multiple genetics, Intellectual Disability genetics, Kyphosis genetics, Scoliosis genetics, Uniparental Disomy
- Abstract
Balanced translocations are associated with a risk of transmission of unbalanced chromosomal rearrangements in the offspring. Such inherited chromosomal abnormalities are typically non-mosaic as they are present in the germline. We report the recurrence in two siblings of a mosaicism for a chromosomal rearrangement inherited from their asymptomatic father who carried a balanced t(2;11)(q35;q25) translocation. Both siblings exhibited a similar phenotype including intellectual disability, dysmorphic features, kyphoscoliosis, and cervical spinal stenosis. Karyotyping, fluorescence in situ hybridization and SNP array analysis of blood lymphocytes of both siblings identified two cell lines: one carrying a 2q35q37.3 duplication and a 11q25qter deletion (~90% cells), and one carrying an 11q uniparental isodisomy of maternal origin (~10% cells). We hypothesize that these mosaics were related to a postzygotic rescue mechanism which unexpectedly recurred in both siblings., (© 2021 Wiley Periodicals LLC.)
- Published
- 2021
- Full Text
- View/download PDF
29. Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy.
- Author
-
Zeitz C, Méjécase C, Michiels C, Condroyer C, Wohlschlegel J, Foussard M, Antonio A, Démontant V, Emmenegger L, Schalk A, Neuillé M, Orhan E, Augustin S, Bonnet C, Estivalet A, Blond F, Blanchard S, Andrieu C, Chantot-Bastaraud S, Léveillard T, Mohand-Saïd S, Sahel JA, and Audo I
- Subjects
- Adult, Cone-Rod Dystrophies etiology, Cone-Rod Dystrophies metabolism, Female, Humans, Male, Pedigree, Phenotype, Cone-Rod Dystrophies pathology, Genes, Recessive, Mitochondrial Proteins genetics, Mutation, Potassium Channels genetics
- Abstract
The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51 . CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.
- Published
- 2021
- Full Text
- View/download PDF
30. When a maternal heterozygous mutation of the CYP24A1 gene leads to infantile hypercalcemia through a maternal uniparental disomy of chromosome 20.
- Author
-
Hureaux M, Chantot-Bastaraud S, Cassinari K, Martinez Casado E, Cuny A, Frébourg T, Vargas-Poussou R, and Bréhin AC
- Abstract
Background: Infantile hypercalcemia is an autosomal recessive disorder caused either by mutations in the CYP24A1 gene (20q13.2) or in the SLC34A1 gene (5q35.3). This disease is characterized by hypercalcemia, hypercalciuria and nephrocalcinosis in paediatric patients. Maternal uniparental disomy of chromosome 20 [UPD(20)mat], resulting in aberrant expression of imprinted transcripts at the GNAS locus, is a poorly characterized condition. UPD(20)mat patients manifest a phenotype similar to that of Silver-Russell syndrome and small for gestational age-short stature., Case Presentation: We report here the genetic and clinical characterization of a male child with a phenotype of infantile hypercalcemia, postnatal growth retardation, and minor dysmorphic features. Genetic analysis using a next generation sequencing panel revealed a homozygous pathogenic variant of CYP24A1. The absence of the variant in the father led to microsatellite segregation analysis, suggestive of UPD. SNP-array revealed a large terminal copy neutral loss of heterozygosity leading to CYP24A1 homozygosity. SNP-array data of parent-child trio confirmed a UPD(20)mat responsible for both infantile hypercalcemia and Silver-Russell syndrome-like traits., Conclusion: This is the first report of uniparental disomy of chromosome 20 revealed by infantile hypercalcemia related to CYP24A1 biallelic homozygous variants, underlying the importance of controlling allelic segregation in cases of homozygosity.
- Published
- 2021
- Full Text
- View/download PDF
31. Prenatal exome sequencing in 65 fetuses with abnormality of the corpus callosum: contribution to further diagnostic delineation.
- Author
-
Heide S, Spentchian M, Valence S, Buratti J, Mach C, Lejeune E, Olin V, Massimello M, Lehalle D, Mouthon L, Whalen S, Faudet A, Mignot C, Garel C, Blondiaux E, Lefebvre M, Quenum-Miraillet G, Chantot-Bastaraud S, Milh M, Bretelle F, Portes VD, Guibaud L, Putoux A, Tsatsaris V, Spodenkiewic M, Layet V, Dard R, Mandelbrot L, Guet A, Moutton S, Gorce M, Nizon M, Vincent M, Beneteau C, Rocchisanni MA, Benachi A, Saada J, Attié-Bitach T, Guilbaud L, Maurice P, Friszer S, Jouannic JM, de Villemeur TB, Moutard ML, Keren B, and Héron D
- Subjects
- Child, Female, Fetus diagnostic imaging, Humans, Pregnancy, Prospective Studies, Ultrasonography, Prenatal, Corpus Callosum diagnostic imaging, Exome genetics
- Abstract
Purpose: Abnormality of the corpus callosum (AbnCC) is etiologically a heterogeneous condition and the prognosis in prenatally diagnosed cases is difficult to predict. The purpose of our research was to establish the diagnostic yield using chromosomal microarray (CMA) and exome sequencing (ES) in cases with prenatally diagnosed isolated (iAbnCC) and nonisolated AbnCC (niAbnCC)., Methods: CMA and prenatal trio ES (pES) were done on 65 fetuses with iAbnCC and niAbnCC. Only pathogenic gene variants known to be associated with AbnCC and/or intellectual disability were considered., Results: pES results were available within a median of 21.5 days (9-53 days). A pathogenic single-nucleotide variant (SNV) was identified in 12 cases (18%) and a pathogenic CNV was identified in 3 cases (4.5%). Thus, the genetic etiology was determined in 23% of cases. In all diagnosed cases, the results provided sufficient information regarding the neurodevelopmental prognosis and helped the parents to make an informed decision regarding the outcome of the pregnancy., Conclusion: Our results show the significant diagnostic and prognostic contribution of CMA and pES in cases with prenatally diagnosed AbnCC. Further prospective cohort studies with long-term follow-up of the born children will be needed to provide accurate prenatal counseling after a negative pES result.
- Published
- 2020
- Full Text
- View/download PDF
32. Congenital immobility and stiffness related to biallelic ATAD1 variants.
- Author
-
Bunod R, Doummar D, Whalen S, Keren B, Chantot-Bastaraud S, Maincent K, Villy MC, Mayer M, Rodriguez D, Burglen L, Léger PL, Kieffer F, Martin I, Héron D, Buratti J, Isapof A, Afenjar A, Billette de Villemeur T, and Mignot C
- Abstract
Objective: To delineate the phenotype associated with biallelic ATAD1 variants., Methods: We describe 2 new patients with ATAD1 -related disorder diagnosed by whole-exome sequencing and compare their phenotype to 6 previous patients., Results: Patients 1 and 2 had a similar distinctive phenotype comprising congenital stiffness of limbs, absent spontaneous movements, weak sucking, and hypoventilation. Both had absent brainstem evoked auditory responses (BEARs). Patient 1 carried the homozygous p.(His357Argfs*15) variant in ATAD1 . In the light of the finding in patient 1, a second reading of exome data for patient 2 revealed the novel homozygous p.(Gly128Val) variant., Conclusions: Analysis of the phenotypes of these 2 patients and of the 6 previous cases showed that biallelic ATAD1 mutations are responsible for a unique congenital encephalopathy likely comprising absent BEAR, different from hyperekplexia and other conditions with neonatal hypertonia., (Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.)
- Published
- 2020
- Full Text
- View/download PDF
33. De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits: report of 25 new individuals and review of the literature.
- Author
-
Nambot S, Faivre L, Mirzaa G, Thevenon J, Bruel AL, Mosca-Boidron AL, Masurel-Paulet A, Goldenberg A, Le Meur N, Charollais A, Mignot C, Petit F, Rossi M, Metreau J, Layet V, Amram D, Boute-Bénéjean O, Bhoj E, Cousin MA, Kruisselbrink TM, Lanpher BC, Klee EW, Fiala E, Grange DK, Meschino WS, Hiatt SM, Cooper GM, Olivié H, Smith WE, Dumas M, Lehman A, Inglese C, Nizon M, Guerrini R, Vetro A, Kaplan ES, Miramar D, Van Gils J, Fergelot P, Bodamer O, Herkert JC, Pajusalu S, Õunap K, Filiano JJ, Smol T, Piton A, Gérard B, Chantot-Bastaraud S, Bienvenu T, Li D, Juusola J, Devriendt K, Bilan F, Poé C, Chevarin M, Jouan T, Tisserant E, Rivière JB, Tran Mau-Them F, Philippe C, Duffourd Y, Dobyns WB, Hevner R, and Thauvin-Robinet C
- Subjects
- Adolescent, Adult, Animals, Autistic Disorder pathology, Child, Child, Preschool, Cognition, Craniofacial Abnormalities pathology, Female, Hippocampus diagnostic imaging, Hippocampus pathology, Humans, Intellectual Disability pathology, Male, Mice, Mutation, Neocortex diagnostic imaging, Neocortex pathology, Syndrome, T-Box Domain Proteins metabolism, Autistic Disorder genetics, Craniofacial Abnormalities genetics, Intellectual Disability genetics, Phenotype, T-Box Domain Proteins genetics
- Abstract
TBR1, a T-box transcription factor expressed in the cerebral cortex, regulates the expression of several candidate genes for autism spectrum disorders (ASD). Although TBR1 has been reported as a high-confidence risk gene for ASD and intellectual disability (ID) in functional and clinical reports since 2011, TBR1 has only recently been recorded as a human disease gene in the OMIM database. Currently, the neurodevelopmental disorders and structural brain anomalies associated with TBR1 variants are not well characterized. Through international data sharing, we collected data from 25 unreported individuals and compared them with data from the literature. We evaluated structural brain anomalies in seven individuals by analysis of MRI images, and compared these with anomalies observed in TBR1 mutant mice. The phenotype included ID in all individuals, associated to autistic traits in 76% of them. No recognizable facial phenotype could be identified. MRI analysis revealed a reduction of the anterior commissure and suggested new features including dysplastic hippocampus and subtle neocortical dysgenesis. This report supports the role of TBR1 in ID associated with autistic traits and suggests new structural brain malformations in humans. We hope this work will help geneticists to interpret TBR1 variants and diagnose ASD probands.
- Published
- 2020
- Full Text
- View/download PDF
34. 16p13.11 microduplication in 45 new patients: refined clinical significance and genotype-phenotype correlations.
- Author
-
Allach El Khattabi L, Heide S, Caberg JH, Andrieux J, Doco Fenzy M, Vincent-Delorme C, Callier P, Chantot-Bastaraud S, Afenjar A, Boute-Benejean O, Cordier MP, Faivre L, Francannet C, Gerard M, Goldenberg A, Masurel-Paulet A, Mosca-Boidron AL, Marle N, Moncla A, Le Meur N, Mathieu-Dramard M, Plessis G, Lesca G, Rossi M, Edery P, Delahaye-Duriez A, De Pontual L, Tabet AC, Lebbar A, Suiro L, Ioos C, Natiq A, Chafai Elalaoui S, Missirian C, Receveur A, François-Fiquet C, Garnier P, Yardin C, Laroche C, Vago P, Sanlaville D, Dupont JM, Benzacken B, and Pipiras E
- Subjects
- Abnormalities, Multiple genetics, Abnormalities, Multiple pathology, Adolescent, Adult, Autism Spectrum Disorder pathology, Cardiovascular Diseases epidemiology, Cardiovascular Diseases genetics, Cardiovascular Diseases pathology, Child, Child, Preschool, Chromosomes, Human, Pair 16 genetics, Developmental Disabilities pathology, Female, Gene Duplication genetics, Genetic Association Studies, Humans, Infant, Intellectual Disability pathology, Male, Phenotype, Risk Factors, Young Adult, Autism Spectrum Disorder genetics, Developmental Disabilities genetics, Intellectual Disability genetics, MicroRNAs genetics, Microtubule-Associated Proteins genetics
- Abstract
Background: The clinical significance of 16p13.11 duplications remains controversial while frequently detected in patients with developmental delay (DD), intellectual deficiency (ID) or autism spectrum disorder (ASD). Previously reported patients were not or poorly characterised. The absence of consensual recommendations leads to interpretation discrepancy and makes genetic counselling challenging. This study aims to decipher the genotype-phenotype correlations to improve genetic counselling and patients' medical care., Methods: We retrospectively analysed data from 16 013 patients referred to 12 genetic centers for DD, ID or ASD, and who had a chromosomal microarray analysis. The referring geneticists of patients for whom a 16p13.11 duplication was detected were asked to complete a questionnaire for detailed clinical and genetic data for the patients and their parents., Results: Clinical features are mainly speech delay and learning disabilities followed by ASD. A significant risk of cardiovascular disease was noted. About 90% of the patients inherited the duplication from a parent. At least one out of four parents carrying the duplication displayed a similar phenotype to the propositus. Genotype-phenotype correlations show no impact of the size of the duplicated segment on the severity of the phenotype. However, NDE1 and miR-484 seem to have an essential role in the neurocognitive phenotype., Conclusion: Our study shows that 16p13.11 microduplications are likely pathogenic when detected in the context of DD/ID/ASD and supports an essential role of NDE1 and miR-484 in the neurocognitive phenotype. Moreover, it suggests the need for cardiac evaluation and follow-up and a large study to evaluate the aortic disease risk., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2020
- Full Text
- View/download PDF
35. A 14q distal chromoanagenesis elucidated by whole genome sequencing.
- Author
-
Ader F, Heide S, Marzin P, Afenjar A, Diguet F, Chantot Bastaraud S, Rollat-Farnier PA, Sanlaville D, Portnoï MF, Siffroi JP, and Schluth-Bolard C
- Subjects
- Abnormalities, Multiple genetics, Adult, Chromosome Disorders genetics, Developmental Disabilities genetics, Female, Genetic Association Studies, Humans, Infant, Male, Phenotype, Prognosis, Whole Genome Sequencing, Abnormalities, Multiple pathology, Chromosome Disorders pathology, Chromosomes, Human, Pair 14 genetics, Developmental Disabilities pathology, Genome, Human
- Abstract
Chromoanagenesis represents an extreme form of genomic rearrangements involving multiple breaks occurring on a single or multiple chromosomes. It has been recently described in both acquired and rare constitutional genetic disorders. Constitutional chromoanagenesis events could lead to abnormal phenotypes including developmental delay and congenital anomalies, and have also been implicated in some specific syndromic disorders. We report the case of a girl presenting with growth retardation, hypotonia, microcephaly, dysmorphic features, coloboma, and hypoplastic corpus callosum. Karyotype showed a de novo structurally abnormal chromosome 14q31qter region. Molecular characterization using SNP-array revealed a complex unbalanced rearrangement in 14q31.1-q32.2, on the paternal chromosome 14, including thirteen interstitial deletions ranging from 33 kb to 1.56 Mb in size, with a total of 4.1 Mb in size, thus suggesting that a single event like chromoanagenesis occurred. To our knowledge, this is one of the first case of 14q distal deletion due to a germline chromoanagenesis. Genome sequencing allowed the characterization of 50 breakpoints, leading to interruption of 10 genes including YY1 which fit with the patient's phenotype. This precise genotyping of breaking junction allowed better definition of genotype-phenotype correlations., (Copyright © 2019 Elsevier Masson SAS. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
36. Increasing knowledge in IGF1R defects: lessons from 35 new patients.
- Author
-
Giabicani E, Willems M, Steunou V, Chantot-Bastaraud S, Thibaud N, Abi Habib W, Azzi S, Lam B, Bérard L, Bony-Trifunovic H, Brachet C, Brischoux-Boucher E, Caldagues E, Coutant R, Cuvelier ML, Gelwane G, Guemas I, Houang M, Isidor B, Jeandel C, Lespinasse J, Naud-Saudreau C, Jesuran-Perelroizen M, Perrin L, Piard J, Sechter C, Souchon PF, Storey C, Thomas D, Le Bouc Y, Rossignol S, Netchine I, and Brioude F
- Subjects
- Abnormalities, Multiple epidemiology, Abnormalities, Multiple physiopathology, Adolescent, Child, Dwarfism genetics, Dwarfism physiopathology, Female, Fetal Growth Retardation epidemiology, Fetal Growth Retardation physiopathology, Growth Disorders epidemiology, Growth Disorders physiopathology, Heterozygote, Homozygote, Humans, Infant, Small for Gestational Age growth & development, Insulin-Like Growth Factor I genetics, Insulin-Like Growth Factor II genetics, Male, Microcephaly genetics, Microcephaly physiopathology, Mutation, Missense genetics, Pedigree, Polymorphism, Single Nucleotide genetics, Receptors, Somatomedin genetics, Abnormalities, Multiple genetics, Fetal Development genetics, Fetal Growth Retardation genetics, Growth Disorders genetics, Receptor, IGF Type 1 genetics
- Abstract
Background: The type 1 insulin-like growth factor receptor (IGF1R) is a keystone of fetal growth regulation by mediating the effects of IGF-I and IGF-II. Recently, a cohort of patients carrying an IGF1R defect was described, from which a clinical score was established for diagnosis. We assessed this score in a large cohort of patients with identified IGF1R defects, as no external validation was available. Furthermore, we aimed to develop a functional test to allow the classification of variants of unknown significance (VUS) in vitro., Methods: DNA was tested for either deletions or single nucleotide variant (SNV) and the phosphorylation of downstream pathways studied after stimulation with IGF-I by western blot analysis of fibroblast of nine patients., Results: We detected 21 IGF1R defects in 35 patients, including 8 deletions and 10 heterozygous, 1 homozygous and 1 compound-heterozygous SNVs. The main clinical characteristics of these patients were being born small for gestational age (90.9%), short stature (88.2%) and microcephaly (74.1%). Feeding difficulties and varying degrees of developmental delay were highly prevalent (54.5%). There were no differences in phenotypes between patients with deletions and SNVs of IGF1R . Functional studies showed that the SNVs tested were associated with decreased AKT phosphorylation., Conclusion: We report eight new pathogenic variants of IGF1R and an original case with a homozygous SNV. We found the recently proposed clinical score to be accurate for the diagnosis of IGF1R defects with a sensitivity of 95.2%. We developed an efficient functional test to assess the pathogenicity of SNVs, which is useful, especially for VUS., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2020
- Full Text
- View/download PDF
37. Risk estimation of uniparental disomy of chromosome 14 or 15 in a fetus with a parent carrying a non-homologous Robertsonian translocation. Should we still perform prenatal diagnosis?
- Author
-
Moradkhani K, Cuisset L, Boisseau P, Pichon O, Lebrun M, Hamdi-Rozé H, Maurin ML, Gruchy N, Manca-Pellissier MC, Malzac P, Bilan F, Audrezet MP, Saugier-Veber P, Fauret-Amsellem AL, Missirian C, Kuentz P, Egea G, Guichet A, Creveaux I, Janel C, Harzallah I, Touraine R, Goumy C, Joyé N, Puechberty J, Haquet E, Chantot-Bastaraud S, Schmitt S, Gosset P, Duban-Bedu B, Delobel B, Vago P, Vialard F, Gomes DM, Siffroi JP, Bonnefont JP, Dupont JM, Jonveaux P, Doco-Fenzy M, Sanlaville D, and Le Caignec C
- Subjects
- Adult, Female, Humans, Male, Pregnancy, Retrospective Studies, Risk Assessment, Chromosomes, Human, Pair 14, Chromosomes, Human, Pair 15, Prenatal Diagnosis, Translocation, Genetic, Uniparental Disomy
- Abstract
Objective: Uniparental disomy (UPD) testing is currently recommended during pregnancy in fetuses carrying a balanced Robertsonian translocation (ROB) involving chromosome 14 or 15, both chromosomes containing imprinted genes. The overall risk that such a fetus presents a UPD has been previously estimated to be around ~0.6-0.8%. However, because UPD are rare events and this estimate has been calculated from a number of studies of limited size, we have reevaluated the risk of UPD in fetuses for whom one of the parents was known to carry a nonhomologous ROB (NHROB)., Method: We focused our multicentric study on NHROB involving chromosome 14 and/or 15. A total of 1747 UPD testing were performed in fetuses during pregnancy for the presence of UPD(14) and/or UPD(15)., Result: All fetuses were negative except one with a UPD(14) associated with a maternally inherited rob(13;14)., Conclusion: Considering these data, the risk of UPD following prenatal diagnosis of an inherited ROB involving chromosome 14 and/or 15 could be estimated to be around 0.06%, far less than the previous estimation. Importantly, the risk of miscarriage following an invasive prenatal sampling is higher than the risk of UPD. Therefore, we do not recommend prenatal testing for UPD for these pregnancies and parents should be reassured., (© 2019 John Wiley & Sons, Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
38. Erratum: Author Correction: A framework to identify contributing genes in patients with Phelan-McDermid syndrome.
- Author
-
Tabet AC, Rolland T, Ducloy M, Lévy J, Buratti J, Mathieu A, Haye D, Perrin L, Dupont C, Passemard S, Capri Y, Verloes A, Drunat S, Keren B, Mignot C, Marey I, Jacquette A, Whalen S, Pipiras E, Benzacken B, Chantot-Bastaraud S, Afenjar A, Héron D, Le Caignec C, Beneteau C, Pichon O, Isidor B, David A, El Khattabi L, Kemeny S, Gouas L, Vago P, Mosca-Boidron AL, Faivre L, Missirian C, Philip N, Sanlaville D, Edery P, Satre V, Coutton C, Devillard F, Dieterich K, Vuillaume ML, Rooryck C, Lacombe D, Pinson L, Gatinois V, Puechberty J, Chiesa J, Lespinasse J, Dubourg C, Quelin C, Fradin M, Journel H, Toutain A, Martin D, Benmansour A, Leblond CS, Toro R, Amsellem F, Delorme R, and Bourgeron T
- Abstract
[This corrects the article DOI: 10.1038/s41525-017-0035-2.].
- Published
- 2019
- Full Text
- View/download PDF
39. The NLRP3 p.A441V Mutation in NLRP3 -AID Pathogenesis: Functional Consequences, Phenotype-Genotype Correlations and Evidence for a Recurrent Mutational Event.
- Author
-
Awad F, Assrawi E, Jumeau C, Odent S, Despert V, Cam G, Perdriger A, Louvrier C, Cobret L, Copin B, Chantot-Bastaraud S, Duquesnoy P, Piterboth W, Le Jeunne C, Quenum-Miraillet G, Siffroi JP, Georgin-Lavialle S, Grateau G, Legendre M, Giurgea I, Karabina SA, and Amselem S
- Abstract
Objective: To determine the molecular and cellular bases of autoinflammatory syndromes in a multigenerational French family with Muckle-Wells syndrome and in a patient originating from Portugal with familial cold autoinflammatory syndrome., Methods: Sequencing of NLRP3 exon 3 was performed in all accessible patients. Microsatellite and whole-genome single nucleotide polymorphism genotyping was used i) to test the intrafamilial segregation of the identified variant and ii) to look for a founder effect. Functional analyses included the study of i) apoptosis-associated speck-like protein containing a CARD (ASC) speck formation in HEK293T cells (stably expressing ASC-green fluorescent protein and pro-caspase 1-FLAG) transiently expressing the wild-type or mutated NLRP3 protein, ii) levels of IL-1β secreted from transfected THP-1 cells, and iii) inflammasome-related gene expression and cytokine secretion from monocytes isolated from patients in crisis (probands from the two families), related patients out of crisis, and from controls., Results: The same heterozygous mutation (c.1322C>T, p.A441V) located in the NACHT domain, segregating with the disease within the first family, was identified in the two families. This mutation was found to be associated with different core haplotypes. NLRP3-A441V led to increased ASC speck formation and high levels of secreted IL-1β. Monocyte inflammasome-related gene expression and cytokine secretion, which were within the normal range in patients out of crisis, were found to be differentially regulated between the two probands, correlating with their phenotypic status., Conclusion: These molecular and cellular findings, which indicate a recurrent mutational event, clearly demonstrate the pathogenicity of the p.A441V missense mutation in NLRP3 -associated autoinflammatory disease and point to the interest of studying patients' primary cells to assess disease activity., (© 2019 The Authors. ACR Open Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.)
- Published
- 2019
- Full Text
- View/download PDF
40. Roles of Type 1 Insulin-Like Growth Factor (IGF) Receptor and IGF-II in Growth Regulation: Evidence From a Patient Carrying Both an 11p Paternal Duplication and 15q Deletion.
- Author
-
Giabicani E, Chantot-Bastaraud S, Bonnard A, Rachid M, Whalen S, Netchine I, and Brioude F
- Abstract
We report an original association of complex genetic defects in a patient carrying both an 11p paternal duplication, resulting in the double expression of insulin-like growth factor 2 (IGF2) , as reported in Beckwith-Wiedemann syndrome, and a 15q terminal deletion, including the type 1 IGF receptor gene ( IGF1R ), resulting in haploinsufficiency for this gene. The patient was born with measurements appropriate for her gestational age but experienced growth retardation in early childhood, allowing a better comprehension of the IGF system in the pathophysiology of growth. It is possible that IGF-II plays a key role in fetal growth, independently of IGF1R signaling, and that its role is less important in post-natal growth, leaving IGF-I and growth hormone as the main actors.
- Published
- 2019
- Full Text
- View/download PDF
41. Exome sequencing in congenital ataxia identifies two new candidate genes and highlights a pathophysiological link between some congenital ataxias and early infantile epileptic encephalopathies.
- Author
-
Valence S, Cochet E, Rougeot C, Garel C, Chantot-Bastaraud S, Lainey E, Afenjar A, Barthez MA, Bednarek N, Doummar D, Faivre L, Goizet C, Haye D, Heron B, Kemlin I, Lacombe D, Milh M, Moutard ML, Riant F, Robin S, Roubertie A, Sarda P, Toutain A, Villard L, Ville D, Billette de Villemeur T, Rodriguez D, and Burglen L
- Subjects
- Adolescent, Ataxia physiopathology, Child, Child, Preschool, Cohort Studies, Exome genetics, Female, France, Genetic Heterogeneity, Genetic Predisposition to Disease genetics, Genotype, Humans, Male, Mutation genetics, Phenotype, Exome Sequencing methods, Young Adult, Ataxia genetics, Cerebellar Ataxia genetics, Spasms, Infantile genetics
- Abstract
Purpose: To investigate the genetic basis of congenital ataxias (CAs), a unique group of cerebellar ataxias with a nonprogressive course, in 20 patients from consanguineous families, and to identify new CA genes., Methods: Singleton -exome sequencing on these 20 well-clinically characterized CA patients. We first checked for rare homozygous pathogenic variants, then, for variants from a list of genes known to be associated with CA or very early-onset ataxia, regardless of their mode of inheritance. Our replication cohort of 180 CA patients was used to validate the new CA genes., Results: We identified a causal gene in 16/20 families: six known CA genes (7 patients); four genes previously implicated in another neurological phenotype (7 patients); two new candidate genes (2 patients). Despite the consanguinity, 4/20 patients harbored a heterozygous de novo pathogenic variant., Conclusion: Singleton exome sequencing in 20 consanguineous CA families led to molecular diagnosis in 80% of cases. This study confirms the genetic heterogeneity of CA and identifies two new candidate genes (PIGS and SKOR2). Our work illustrates the diversity of the pathophysiological pathways in CA, and highlights the pathogenic link between some CA and early infantile epileptic encephalopathies related to the same genes (STXBP1, BRAT1, CACNA1A and CACNA2D2).
- Published
- 2019
- Full Text
- View/download PDF
42. Various Genital and Reproductive Phenotypes in 46,XX/46,XY Chimeras.
- Author
-
Hercent A, Amar E, Valent A, Belloc S, Ferraretto X, Hermieu JF, Battin-Bertho R, Storey C, Goubin-Versini I, Dijoud F, Tabet AC, Chantot-Bastaraud S, Peycelon M, Morel H, and Siffroi JP
- Abstract
Tetragametic chimeras are due to the fusion of 2 different zygotes after fertilization. When occurring between embryos of different chromosomal sex, the phenotype ranges from fertile individuals to infertile patients and even to patients with variations in sex development. Here, we report 3 new cases of XX/XY chimeras, one in a young boy carrying an abnormal gonad which turned out to be an ovary and 2 in phenotypically normal infertile men, one of whom had been diagnosed previously as a XX-SRY negative male. These cases highlight the importance of combining several cytogenetic and molecular techniques on different tissues for a proper diagnosis and an appropriate prognosis., (© 2020 S. Karger AG, Basel.)
- Published
- 2019
- Full Text
- View/download PDF
43. Normal Growth despite Combined Pituitary Hormone Deficiency.
- Author
-
El Kholy M, Elsedfy H, Perin L, Abi Habid W, Thibaud N, Bozzola M, Rossignol S, Leneuve P, Godeau F, Chantot-Bastaraud S, Netchine I, and Le Bouc Y
- Subjects
- Adolescent, Adult, Homeodomain Proteins blood, Human Growth Hormone genetics, Humans, Insulin-Like Growth Factor Binding Protein 3 genetics, Insulin-Like Growth Factor Binding Protein 3 metabolism, Insulin-Like Growth Factor I genetics, Insulin-Like Growth Factor I metabolism, Insulin-Like Growth Factor II genetics, Insulin-Like Growth Factor II metabolism, MCF-7 Cells, Male, Homeodomain Proteins genetics, Human Growth Hormone blood, Hypopituitarism blood, Hypopituitarism genetics, Hypopituitarism physiopathology, Mutation
- Abstract
Background: The paradox of normal growth despite a lack of growth hormone (GH) is an unexplained phenomenon described in some pathological (sellar, suprasellar, and hypothalamic disorders) and overgrowth syndromes. It has been suggested that the paradoxical growth is due to other GH variants, GH-like moieties, prolactin, insulin, insulin-like growth factors (IGFs), and unidentified serum factors or growth mechanisms. The objective of this study was to determine the mechanism underlying this normal growth without GH., Case Description: We describe here growth, hormonal, and genetic analyses for an adolescent boy with panhypopituitarism who achieved an adult height above his genetic potential., Results: Normal growth was observed despite low serum GH, IGF-I, IGF-II, IGF binding protein 3 (IGFBP-3) and acid labile subunit (ALS) concentrations, but the IGF-II/IGFBP-3 molar ratio was slightly high. Panhypopituitarism was associated with a heterozygous missense mutation of HESX1, with variable penetrance in heterozygous relatives. Exome analysis detected heterozygous missense mutations of various genes involved in intracellular signaling pathways. The growth-promoting activity of the patient's serum was unable to induce AKT phosphorylation in the MCF-7 cell line., Conclusion: The high IGF-II/IGFBP-3 molar ratio was not the cause of the sustained high growth velocity, due to the low affinity of IGF-II for IGF type 1 receptor. The key finding was the HESX1 mutation, as similar cases have been described before, suggesting a common mechanism for growth without GH. However, the variable penetrance of this variant in heterozygous relatives suggests that modifier genes or mechanisms involving combinations with mutations of other genes involved in intracellular signaling pathways might be responsible., (© 2019 S. Karger AG, Basel.)
- Published
- 2019
- Full Text
- View/download PDF
44. Chromosome 14q32.2 Imprinted Region Disruption as an Alternative Molecular Diagnosis of Silver-Russell Syndrome.
- Author
-
Geoffron S, Abi Habib W, Chantot-Bastaraud S, Dubern B, Steunou V, Azzi S, Afenjar A, Busa T, Pinheiro Canton A, Chalouhi C, Dufourg MN, Esteva B, Fradin M, Geneviève D, Heide S, Isidor B, Linglart A, Morice Picard F, Naud-Saudreau C, Oliver Petit I, Philip N, Pienkowski C, Rio M, Rossignol S, Tauber M, Thevenon J, Vu-Hong TA, Harbison MD, Salem J, Brioude F, Netchine I, and Giabicani E
- Subjects
- Adolescent, Adult, Calcium-Binding Proteins, Child, Child, Preschool, Chromosome Deletion, Chromosome Disorders diagnosis, DNA Methylation genetics, Diagnosis, Differential, Female, Genomic Imprinting genetics, Humans, Intercellular Signaling Peptides and Proteins genetics, Male, Membrane Proteins genetics, Phenotype, Puberty, Precocious genetics, RNA, Long Noncoding genetics, Retrospective Studies, Silver-Russell Syndrome diagnosis, Syndrome, Uniparental Disomy, Young Adult, Chromosome Disorders genetics, Chromosomes, Human, Pair 14 genetics, Silver-Russell Syndrome genetics
- Abstract
Context: Silver-Russell syndrome (SRS) (mainly secondary to 11p15 molecular disruption) and Temple syndrome (TS) (secondary to 14q32.2 molecular disruption) are imprinting disorders with phenotypic (prenatal and postnatal growth retardation, early feeding difficulties) and molecular overlap., Objective: To describe the clinical overlap between SRS and TS and extensively study the molecular aspects of TS., Patients: We retrospectively collected data on 28 patients with disruption of the 14q32.2 imprinted region, identified in our center, and performed extensive molecular analysis., Results: Seventeen (60.7%) patients showed loss of methylation of the MEG3/DLK1 intergenic differentially methylated region by epimutation. Eight (28.6%) patients had maternal uniparental disomy of chromosome 14 and three (10.7%) had a paternal deletion in 14q32.2. Most patients (72.7%) had a Netchine-Harbison SRS clinical scoring system ≥4/6, and consistent with a clinical diagnosis of SRS. The mean age at puberty onset was 7.2 years in girls and 9.6 years in boys; 37.5% had premature pubarche. The body mass index of all patients increased before pubarche and/or the onset of puberty. Multilocus analysis identified multiple methylation defects in 58.8% of patients. We identified four potentially damaging genetic variants in genes encoding proteins involved in the establishment or maintenance of DNA methylation., Conclusions: Most patients with 14q32.2 disruption fulfill the criteria for a clinical diagnosis of SRS. These clinical data suggest similar management of patients with TS and SRS, with special attention to their young age at the onset of puberty and early increase of body mass index.
- Published
- 2018
- Full Text
- View/download PDF
45. Further delineation of the MECP2 duplication syndrome phenotype in 59 French male patients, with a particular focus on morphological and neurological features.
- Author
-
Miguet M, Faivre L, Amiel J, Nizon M, Touraine R, Prieur F, Pasquier L, Lefebvre M, Thevenon J, Dubourg C, Julia S, Sarret C, Remerand G, Francannet C, Laffargue F, Boespflug-Tanguy O, David A, Isidor B, Vigneron J, Leheup B, Lambert L, Philippe C, Béri-Dexheimer M, Cuisset JM, Andrieux J, Plessis G, Toutain A, Guibaud L, Cormier-Daire V, Rio M, Bonnefont JP, Echenne B, Journel H, Burglen L, Chantot-Bastaraud S, Bienvenu T, Baumann C, Perrin L, Drunat S, Jouk PS, Dieterich K, Devillard F, Lacombe D, Philip N, Sigaudy S, Moncla A, Missirian C, Badens C, Perreton N, Thauvin-Robinet C, AChro-Puce R, Pedespan JM, Rooryck C, Goizet C, Vincent-Delorme C, Duban-Bedu B, Bahi-Buisson N, Afenjar A, Maincent K, Héron D, Alessandri JL, Martin-Coignard D, Lesca G, Rossi M, Raynaud M, Callier P, Mosca-Boidron AL, Marle N, Coutton C, Satre V, Caignec CL, Malan V, Romana S, Keren B, Tabet AC, Kremer V, Scheidecker S, Vigouroux A, Lackmy-Port-Lis M, Sanlaville D, Till M, Carneiro M, Gilbert-Dussardier B, Willems M, Van Esch H, Portes VD, and El Chehadeh S
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Chromosomes, Human, X genetics, Developmental Disabilities complications, Developmental Disabilities genetics, Developmental Disabilities physiopathology, Epilepsy complications, Epilepsy genetics, Epilepsy physiopathology, Exotropia complications, Exotropia physiopathology, France epidemiology, Humans, Hyperopia complications, Hyperopia genetics, Hyperopia physiopathology, Hypertension, Pulmonary complications, Hypertension, Pulmonary physiopathology, Infant, Intellectual Disability complications, Intellectual Disability physiopathology, Male, Mental Retardation, X-Linked complications, Mental Retardation, X-Linked physiopathology, Pedigree, Phenotype, Somatosensory Disorders genetics, Somatosensory Disorders physiopathology, Stereotypic Movement Disorder complications, Stereotypic Movement Disorder genetics, Stereotypic Movement Disorder physiopathology, Young Adult, Exotropia genetics, Hypertension, Pulmonary genetics, Intellectual Disability genetics, Mental Retardation, X-Linked genetics, Methyl-CpG-Binding Protein 2 genetics
- Abstract
The Xq28 duplication involving the MECP2 gene ( MECP2 duplication) has been mainly described in male patients with severe developmental delay (DD) associated with spasticity, stereotypic movements and recurrent infections. Nevertheless, only a few series have been published. We aimed to better describe the phenotype of this condition, with a focus on morphological and neurological features. Through a national collaborative study, we report a large French series of 59 affected males with interstitial MECP2 duplication. Most of the patients (93%) shared similar facial features, which evolved with age (midface hypoplasia, narrow and prominent nasal bridge, thick lower lip, large prominent ears), thick hair, livedo of the limbs, tapered fingers, small feet and vasomotor troubles. Early hypotonia and global DD were constant, with 21% of patients unable to walk. In patients able to stand, lower limbs weakness and spasticity led to a singular standing habitus: flexion of the knees, broad-based stance with pseudo-ataxic gait. Scoliosis was frequent (53%), such as divergent strabismus (76%) and hypermetropia (54%), stereotypic movements (89%), without obvious social withdrawal and decreased pain sensitivity (78%). Most of the patients did not develop expressive language, 35% saying few words. Epilepsy was frequent (59%), with a mean onset around 7.4 years of age, and often (62%) drug-resistant. Other medical issues were frequent: constipation (78%), and recurrent infections (89%), mainly lung. We delineate the clinical phenotype of MECP2 duplication syndrome in a large series of 59 males. Pulmonary hypertension appeared as a cause of early death in these patients, advocating its screening early in life., Competing Interests: Competing interests: None declared., (© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.)
- Published
- 2018
- Full Text
- View/download PDF
46. Mutations involving the SRY-related gene SOX8 are associated with a spectrum of human reproductive anomalies.
- Author
-
Portnoi MF, Dumargne MC, Rojo S, Witchel SF, Duncan AJ, Eozenou C, Bignon-Topalovic J, Yatsenko SA, Rajkovic A, Reyes-Mugica M, Almstrup K, Fusee L, Srivastava Y, Chantot-Bastaraud S, Hyon C, Louis-Sylvestre C, Validire P, de Malleray Pichard C, Ravel C, Christin-Maitre S, Brauner R, Rossetti R, Persani L, Charreau EH, Dain L, Chiauzzi VA, Mazen I, Rouba H, Schluth-Bolard C, MacGowan S, McLean WHI, Patin E, Rajpert-De Meyts E, Jauch R, Achermann JC, Siffroi JP, McElreavey K, and Bashamboo A
- Subjects
- Adolescent, Child, Female, Humans, Male, 46, XX Disorders of Sex Development genetics, Disorder of Sex Development, 46,XY genetics, Mutation, Missense, Oligospermia genetics, Primary Ovarian Insufficiency genetics, SOXE Transcription Factors genetics
- Abstract
SOX8 is an HMG-box transcription factor closely related to SRY and SOX9. Deletion of the gene encoding Sox8 in mice causes reproductive dysfunction but the role of SOX8 in humans is unknown. Here, we show that SOX8 is expressed in the somatic cells of the early developing gonad in the human and influences human sex determination. We identified two individuals with 46, XY disorders/differences in sex development (DSD) and chromosomal rearrangements encompassing the SOX8 locus and a third individual with 46, XY DSD and a missense mutation in the HMG-box of SOX8. In vitro functional assays indicate that this mutation alters the biological activity of the protein. As an emerging body of evidence suggests that DSDs and infertility can have common etiologies, we also analysed SOX8 in a cohort of infertile men (n = 274) and two independent cohorts of women with primary ovarian insufficiency (POI; n = 153 and n = 104). SOX8 mutations were found at increased frequency in oligozoospermic men (3.5%; P < 0.05) and POI (5.06%; P = 4.5 × 10-5) as compared with fertile/normospermic control populations (0.74%). The mutant proteins identified altered SOX8 biological activity as compared with the wild-type protein. These data demonstrate that SOX8 plays an important role in human reproduction and SOX8 mutations contribute to a spectrum of phenotypes including 46, XY DSD, male infertility and 46, XX POI.
- Published
- 2018
- Full Text
- View/download PDF
47. Chromosomal rearrangements in the 11p15 imprinted region: 17 new 11p15.5 duplications with associated phenotypes and putative functional consequences.
- Author
-
Heide S, Chantot-Bastaraud S, Keren B, Harbison MD, Azzi S, Rossignol S, Michot C, Lackmy-Port Lys M, Demeer B, Heinrichs C, Newfield RS, Sarda P, Van Maldergem L, Trifard V, Giabicani E, Siffroi JP, Le Bouc Y, Netchine I, and Brioude F
- Subjects
- Adult, Beckwith-Wiedemann Syndrome pathology, Centromere genetics, Chromosome Aberrations, Chromosomes, Human, Pair 11 genetics, Cyclin-Dependent Kinase Inhibitor p57 genetics, Cytogenetic Analysis, Female, Humans, Insulin-Like Growth Factor II genetics, Male, Mutation, Phenotype, Silver-Russell Syndrome pathology, Telomere genetics, Beckwith-Wiedemann Syndrome genetics, Gene Duplication genetics, Molecular Imprinting, Silver-Russell Syndrome genetics
- Abstract
Background: The 11p15 region contains two clusters of imprinted genes. Opposite genetic and epigenetic anomalies of this region result in two distinct growth disturbance syndromes: Beckwith-Wiedemann (BWS) and Silver-Russell syndromes (SRS). Cytogenetic rearrangements within this region represent less than 3% of SRS and BWS cases. Among these, 11p15 duplications were infrequently reported and interpretation of their pathogenic effects is complex., Objectives: To report cytogenetic and methylation analyses in a cohort of patients with SRS/BWS carrying 11p15 duplications and establish genotype/phenotype correlations., Methods: From a cohort of patients with SRS/BWS with an abnormal methylation profile (using ASMM-RTQ-PCR), we used SNP-arrays to identify and map the 11p15 duplications. We report 19 new patients with SRS (n=9) and BWS (n=10) carrying de novo or familial 11p15 duplications, which completely or partially span either both telomeric and centromeric domains or only one domain., Results: Large duplications involving one complete domain or both domains are associated with either SRS or BWS, depending on the parental origin of the duplication. Genotype-phenotype correlation studies of partial duplications within the telomeric domain demonstrate the prominent role of IGF2 , rather than H19 , in the control of growth. Furthermore, it highlights the role of CDKN1C within the centromeric domain and suggests that the expected overexpression of KCNQ1OT1 from the paternal allele (in partial paternal duplications, excluding CDKN1C ) does not affect the expression of CDKN1C ., Conclusions: The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling., Competing Interests: Competing interests: None declared., (© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.)
- Published
- 2018
- Full Text
- View/download PDF
48. How chromosomal deletions can unmask recessive mutations? Deletions in 10q11.2 associated with CHAT or SLC18A3 mutations lead to congenital myasthenic syndrome.
- Author
-
Schwartz M, Sternberg D, Whalen S, Afenjar A, Isapof A, Chabrol B, Portnoï MF, Heide S, Keren B, Chantot-Bastaraud S, and Siffroi JP
- Subjects
- Amino Acid Sequence, Female, Genetic Association Studies, Humans, In Situ Hybridization, Fluorescence, Infant, Male, Oligonucleotide Array Sequence Analysis, Polymorphism, Single Nucleotide, Choline O-Acetyltransferase genetics, Chromosome Deletion, Chromosomes, Human, Pair 10, Genes, Recessive, Mutation, Myasthenic Syndromes, Congenital diagnosis, Myasthenic Syndromes, Congenital genetics, Phenotype, Vesicular Acetylcholine Transport Proteins genetics
- Abstract
A congenital myasthenia was suspected in two unrelated children with very similar phenotypes including several episodes of severe dyspnea. Both children had a 10q11.2 deletion revealed by Single Nucleotide Polymorphisms array or by Next Generation Sequencing analysis. The deletion was inherited from the healthy mother in the first case. These deletions unmasked a recessive mutation at the same locus in both cases, but in two different genes: CHAT and SLC18A3., (© 2017 Wiley Periodicals, Inc.)
- Published
- 2018
- Full Text
- View/download PDF
49. A framework to identify contributing genes in patients with Phelan-McDermid syndrome.
- Author
-
Tabet AC, Rolland T, Ducloy M, Lévy J, Buratti J, Mathieu A, Haye D, Perrin L, Dupont C, Passemard S, Capri Y, Verloes A, Drunat S, Keren B, Mignot C, Marey I, Jacquette A, Whalen S, Pipiras E, Benzacken B, Chantot-Bastaraud S, Afenjar A, Héron D, Le Caignec C, Beneteau C, Pichon O, Isidor B, David A, El Khattabi L, Kemeny S, Gouas L, Vago P, Mosca-Boidron AL, Faivre L, Missirian C, Philip N, Sanlaville D, Edery P, Satre V, Coutton C, Devillard F, Dieterich K, Vuillaume ML, Rooryck C, Lacombe D, Pinson L, Gatinois V, Puechberty J, Chiesa J, Lespinasse J, Dubourg C, Quelin C, Fradin M, Journel H, Toutain A, Martin D, Benmansour A, Leblond CS, Toro R, Amsellem F, Delorme R, and Bourgeron T
- Abstract
Phelan-McDermid syndrome (PMS) is characterized by a variety of clinical symptoms with heterogeneous degrees of severity, including intellectual disability (ID), absent or delayed speech, and autism spectrum disorders (ASD). It results from a deletion of the distal part of chromosome 22q13 that in most cases includes the SHANK3 gene. SHANK3 is considered a major gene for PMS, but the factors that modulate the severity of the syndrome remain largely unknown. In this study, we investigated 85 patients with different 22q13 rearrangements (78 deletions and 7 duplications). We first explored the clinical features associated with PMS, and provide evidence for frequent corpus callosum abnormalities in 28% of 35 patients with brain imaging data. We then mapped several candidate genomic regions at the 22q13 region associated with high risk of clinical features, and suggest a second locus at 22q13 associated with absence of speech. Finally, in some cases, we identified additional clinically relevant copy-number variants (CNVs) at loci associated with ASD, such as 16p11.2 and 15q11q13, which could modulate the severity of the syndrome. We also report an inherited SHANK3 deletion transmitted to five affected daughters by a mother without ID nor ASD, suggesting that some individuals could compensate for such mutations. In summary, we shed light on the genotype-phenotype relationship of patients with PMS, a step towards the identification of compensatory mechanisms for a better prognosis and possibly treatments of patients with neurodevelopmental disorders., Competing Interests: The authors declare that they have no competing financial interests.
- Published
- 2017
- Full Text
- View/download PDF
50. Clinical and molecular cytogenetic characterization of four unrelated patients carrying 2p14 microdeletions.
- Author
-
Mathieu ML, Demily C, Chantot-Bastaraud S, Afenjar A, Mignot C, Andrieux J, Gerard M, Catala-Mora J, Jouk PS, Labalme A, Edery P, Sanlaville D, and Rossi M
- Subjects
- Cardiomyopathies genetics, Cardiomyopathies physiopathology, Child, Child, Preschool, Chromosome Deletion, Chromosomes, Human, Pair 2 genetics, France, Haploinsufficiency genetics, Hearing Loss, Sensorineural complications, Hearing Loss, Sensorineural genetics, Hearing Loss, Sensorineural physiopathology, Humans, Intellectual Disability complications, Intellectual Disability physiopathology, Male, Spain, Actin-Related Protein 2 genetics, Intellectual Disability genetics, Myeloid Ecotropic Viral Integration Site 1 Protein genetics, Otx Transcription Factors genetics
- Abstract
We report the clinical and molecular cytogenetic characterization of four unrelated patients from France and Spain, carrying 2p14 microdeletions and presenting with intellectual disability and dysmorphisms. 2p14 microdeletions are very rare. Seven patients have been reported so far harboring deletions including 2p14p15 and encompassing OTX1, whose haploinsufficiency is frequently associated with genitourinary defects. To date, only one patient has been reported carrying a more proximal 2p14 microdeletion which does not include OTX1. Here, we report three further patients carrying proximal 2p14 microdeletions not including OTX1 and one patient carrying a more distal 2p14p15 microdeletion including this gene, providing new insights into the associated phenotypic spectrum. First, our study and a review of the literature showed that 3/4 patients carrying proximal 2p14 microdeletions had sensorineural hearing loss, suggesting the presence of a previously unreported deafness-causing gene in this chromosomal region. Second, one patient developed a progressive cardiomyopathy, suggesting that a cardiac follow-up should be systematically warranted even in the absence of congenital heart disease. We speculate that ACTR2 and MEIS1 might respectively play a role in the pathogenesis of the observed deafness and cardiomyopathy. Third, we observed other previously unreported features such as glaucoma, retinopathy, and mild midline abnormalities including short corpus callosum, hypospadias and anteriorly placed anus. Finally, the patient carrying a 2p14p15 deletion including OTX1 had normal kidneys and genitalia, thus confirming that OTX1 haploinsufficiency is not invariably associated with genitourinary defects. In conclusion, our study contributes significantly to delineate the phenotypic spectrum of 2p14 microdeletions., (© 2017 Wiley Periodicals, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.