11 results on '"Eirik Gjerløw"'
Search Results
2. Investigating the Influence of Oil Shale Ash and Basalt Composite Fibres on the Interfacial Transition Zone in Concrete
- Author
-
Iveta Nováková, Ashfaque Ahmed Jhatial, Sofija Kekez, Eirik Gjerløw, Volodymyr Gulik, Karunamoorthy Rengasamy Kannathasan, Mindaugas Vaišnoras, and Andrejs Krasnikovs
- Subjects
interfacial transition zone (ITZ) ,fibre–paste transition zone ,basalt fibres (BFs) ,oil shale ash (OSA) ,supplementary cementitious materials (SCMs) ,microstructure analysis ,Building construction ,TH1-9745 - Abstract
The interfacial transition zone (ITZ) is the weakest phase in concrete, characterised by higher porosity and being prone to microcrack formation. Additionally, the ITZ is created when dispersed fibre reinforcement is present. Although fibres improve flexural strength, they can negatively impact other properties. This research investigates the ITZ of fibre-reinforced concrete where macro-basalt fibres (BFs) and oil shale ash (OSA), as an SCM, were used with the aim of modifying the properties of concrete, enhancing the ITZ, and reducing its carbon footprint. Six different concrete mixes with OSA doses between 10% and 30% and a constant BF dose of 8.0 kg per 1 m3 of concrete were prepared and tested. The ITZ was analysed with SEM images and verified through its mechanical properties. The results showed that the presence of OSA improved bonding and densified the microstructure of the paste, especially in the ITZ, resulting in a nearly constant flexural strength at up to a 20% replacement and only a 6.7% decrease in compressive strength while reducing the global warming potential by 19.24 kg CO2 equivalent in the mix with 10% OSA replacement. Higher replacement ratios had a negative impact on the mechanical properties, as the OSA had not reacted entirely and served partly as an inert filler.
- Published
- 2024
- Full Text
- View/download PDF
3. The Volcanic Hazards of Jan Mayen Island (North-Atlantic)
- Author
-
Eirik Gjerløw, Ármann Höskuldsson, Stefania Bartolini, Sebastien Biass, Sophie Mossoux, Jennie Gilbert, Rolf Birger Pedersen, and Joan Martí
- Subjects
volcanic hazard ,eruptive scenarios ,geohazard ,hazard models ,hazard assesment ,volcano ,Science - Abstract
Hazard assessment of remote volcanic islands provides many challenges compared to other volcanoes and volcanic fields. Here we present the first systematic volcanic hazard assessment of Jan Mayen Island, a remote island located in the North-Atlantic Ocean and home to the northernmost active subaerial volcano in the world (Beerenberg Volcano), and we discuss some of the challenges and characteristics of performing a volcanic hazard assessment of a remote volcanic island. Jan Mayen has had at least five eruptions since its discovery at the start of the 17th century. Its Holocene volcanism is mainly characterized by eruptions with styles ranging from Hawaiian to Strombolian, but also by lava domes and Surtseyan eruptions. Based on field data, remote images, topographic data, past data, and computer simulations, our study evaluates the spatial probability of new vents opening, estimates eruption recurrence rates, simulates various eruption scenarios, and produces hazard maps for the different scenarios. This work shows where the hazards of ash fall, and lava flows are more likely to affect the built infrastructure on Jan Mayen Island. This hazard assessment will assist emergency planning and the determination of future land use on the island.
- Published
- 2022
- Full Text
- View/download PDF
4. A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods
- Author
-
Ashfaque Ahmed Jhatial, Iveta Nováková, and Eirik Gjerløw
- Subjects
sustainable concrete recycling ,supplementary cementitious materials (SCMs) ,environmental hazards ,natural resources conservation ,reactivity testing ,treatment methods ,Building construction ,TH1-9745 - Abstract
Alternative to traditional concrete, sustainable concrete reduces cement content, waste management issues, and CO2 emissions. To achieve sustainable concrete, waste materials can be used as supplementary cementitious materials (SCMs) to partially replace cement. Fly ash, ground-granulated blast furnace slag, and silica fume have been heavily studied as SCMs. However, due to the retirement of coal-fired power plants and switching to renewable energy, existing SCMs are losing their dominance. With SCMs becoming more widely accepted as partial cement substitutes, there is fear that the current supply will not meet future demand. As a result, researchers have been looking for alternative SCMs. The circular economy can be achieved by reusing non-hazardous construction and demolition materials, timber, and metal/steel production waste as SCMs. This article discusses emerging SCMs, reactivity evaluation methods, their limitations, and treatment methods that may improve reactivity. Emerging SCMs can replace existing SCMs in quantity, but their supply to cement factories and low reactivity due to stable crystallinity hinders their use. Among treatment methods, particle size reduction effectively enhances reactivity; however, very fine SCM may increase the overall water demand due to the large surface area. Decades-old reactivity evaluation methods have relatively weak correlations and thus misreport the reactivity of SCMs. Newer R3 models, such as calorimetry and bound water, give the best correlations (R ≥ 0.85) for 28-day relative strength and better performance. Additionally, more concrete testing with emerging SCMs under different durability and environmental protection conditions is required and life cycle assessments are needed to determine their regional environmental impact.
- Published
- 2023
- Full Text
- View/download PDF
5. Artificial Thawing of Frozen Ground: A Review
- Author
-
Huong Phan Thu Ngo, Svein-Erik Sveen, and Eirik Gjerløw
- Subjects
Geotechnical Engineering and Engineering Geology ,Industrial and Manufacturing Engineering - Abstract
Understanding the freezing and thawing processes in porous media such as soils is important, especially in regions experiencing seasonal frost or permafrost. These processes have a wide range of implications as diverse as how to maintain the structural integrity of roads, railways, pipelines, and buildings, to when to plant seeds during the growth season. Thawing of frozen ground is the opposite process of ground freezing but has not received nearly as much attention as the latter in research studies or field experiments. Accurately predicting thaw depth or thaw rate is a challenging task. Many mathematical models have been proposed to describe the thawing process, with different perspectives and complexity. This paper provides an overview of historical modeling efforts made for predicting heat and mass transfer during thawing. Assumptions and premises for each model are discussed, as well as limitations and some applications. In addition, this paper reviews historical and modern approaches to thawing of frozen ground in cold regions, lists pros and cons of each method, and gives examples of applications. The review shows the need for further research and more accurate models, specifically for predicting thaw depth and thaw rates in frozen ground subjected to artificial thawing.
- Published
- 2022
- Full Text
- View/download PDF
6. Evaluating of melting-ice process in a vertical pipe with consideration of net sensible heat
- Author
-
Hung Thanh Nguyen, Eirik Gjerløw, and Minh-Thu T. Huynh
- Subjects
Energy Engineering and Power Technology ,Industrial and Manufacturing Engineering - Published
- 2023
- Full Text
- View/download PDF
7. WALOP-South: A Four-Camera One-Shot Imaging Polarimeter for PASIPHAE Survey. Paper II -- Polarimetric Modelling and Calibration
- Author
-
Siddharth Maharana, Ramya M. Anche, Anamparambu N. Ramaprakash, Bhushan Joshi, Artem Basyrov, Dmitry Blinov, Carolina Casadio, Kishan Deka, Hans Kristian Eriksen, Tuhin Ghosh, Eirik Gjerløw, John A. Kypriotakis, Sebastian Kiehlmann, Nikolaos Mandarakas, Georgia V. Panopoulou, Katerina Papadaki, Vasiliki Pavlidou, Timothy J. Pearson, Vincent Pelgrims, Stephen B. Potter, Anthony C. S. Readhead, Raphael Skalidis, Trygve Leithe Svalheim, Konstantinos Tassis, and Ingunn K. Wehus
- Subjects
Space and Planetary Science ,Control and Systems Engineering ,Mechanical Engineering ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation ,Electronic, Optical and Magnetic Materials - Abstract
The Wide-Area Linear Optical Polarimeter (WALOP)-South instrument is an upcoming wide-field and high-accuracy optical polarimeter to be used as a survey instrument for carrying out the Polar-Areas Stellar Imaging in Polarization High Accuracy Experiment (PASIPHAE) program. Designed to operate as a one-shot four-channel and four-camera imaging polarimeter, it will have a field of view of $35\times 35$ arcminutes and will measure the Stokes parameters $I$, $q$, and $u$ in a single exposure in the SDSS-r broadband filter. The design goal for the instrument is to achieve an overall polarimetric measurement accuracy of 0.1 % over the entire field of view. We present here the complete polarimetric modeling of the instrument, characterizing the amount and sources of instrumental polarization. To accurately retrieve the real Stokes parameters of a source from the measured values, we have developed a calibration method for the instrument. Using this calibration method and simulated data, we demonstrate how to correct instrumental polarization and obtain 0.1 % accuracy in the degree of polarization, $p$. Additionally, we tested and validated the calibration method by implementing it on a table-top WALOP-like test-bed polarimeter in the laboratory., 34 pages, 24 figures. Accepted for publication in the Journal of Astronomical Telescopes, Instruments, and Systems
- Published
- 2022
8. Stress-induced birefringence in the lenses of Wide-Area Linear Optical Polarimeter-South
- Author
-
Ramya M. Anche, Siddharth Maharana, Anamparambu N. Ramaprakash, Pravin Khodade, Deepa Modi, Chaitanya Rajarshi, John A. Kypriotakis, Dmitry Blinov, Hans K. Eriksen, Tuhin Ghosh, Georgia V. Panopoulou, Vincent Pelgrims, Raphael Skalidis, Timothy J. Pearson, Eirik Gjerløw, Nikolaos Mandarakas, Vasiliki Pavlidou, Stephen . Potter, Anthony C. S. Readhead, Konstantinos Tassis, Artem Basyrov, Katerina Papadaki, Trygve Leithe Svalheim, and Ingunn . Wehus
- Abstract
Two unique wide-field and high-accuracy polarimeters named WALOP (Wide-Area Linear Optical Polarimeter)- North and WALOP-South are currently under development at the Inter-University Center for Astronomy and Astrophysics (IUCAA), India, to create a large area optical polarization map of the sky for the upcoming PASIPHAE sky survey. These instruments are designed to achieve a linear polarimetric measurement accuracy of 0.1% across a field of view (FoV) of 30×30 arcminutes. The WALOP-South instrument will be installed first on a 1 m telescope at the Sutherland Observatory, where the temperatures during the night can vary between 10 to -5°C. These temperature variations and the instrument’s pointing to various non-zenithal positions in the sky can introduce stress birefringence in the lenses, leading to time-varying instrumental polarization. This work estimates stress-induced birefringence due to thermal, and gravity stresses on WALOP-South lenses. Using the optomechanical model of the WALOP-South, we carried out Finite Element Analysis (FEA) simulations in SolidWorks software to estimate the stresses for various scenarios of temperature, telescope pointing airmass, and lens mount material (aluminum and titanium). Further, we use the stress tensor analysis to estimate the principal stresses and their directions and consequent birefringence and retardance introduced in the lenses. The stressinduced birefringence will change the optical path length for orthogonal polarization states of the beam passing through the lenses and introduce phase retardation. Overall, with the lens mount design of the instrument, we find that the retardation and consequent instrumental polarization will be within the instrumental accuracy requirements. Additionally, the stress birefringence is found to be higher for aluminum compared to titanium mounts. We further incorporated this retardance in the instrument Mueller matrix estimation to understand its effects on the polarization measurements.
- Published
- 2022
9. Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission
- Author
-
Ludovic Montier, Baptiste Mot, Paolo de Bernardis, Bruno Maffei, Giampaolo Pisano, Fabio Columbro, Jon E. Gudmundsson, Sophie Henrot-Versillé, Luca Lamagna, Joshua Montgomery, Thomas Prouvé, Megan Russell, Giorgio Savini, Samantha Stever, Keith L. Thompson, Masahiro Tsujimoto, Carole Tucker, Benjamin Westbrook, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, Ranajoy Banerji, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Masashi Hazumi, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Gianluca Morgante, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Gianluca Polenta, Davide Poletti, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), LiteBIRD, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, European Research Council, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Lystrup, Makenzie, Montier, L, Mot, B, de Bernardis, P, Maffei, B, Pisano, G, Columbro, F, Gudmundsson, J, Henrot-Versillé, S, Lamagna, L, Montgomery, J, Prouvé, T, Russell, M, Savini, G, Stever, S, Thompson, K, Tsujimoto, M, Tucker, C, Westbrook, B, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Morgante, G, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Polenta, G, Poletti, D, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, and Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Cosmic microwave background ,cosmic background radiation: polarization ,detector: noise ,magnetic field ,02 engineering and technology ,LiteBIRD, cosmic microwave background, polarization measurements, space telescopes ,7. Clean energy ,01 natural sciences ,law.invention ,law ,detector: calibration ,media_common ,Physics ,conductivity: thermal ,Settore FIS/05 ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,Polarization (waves) ,inflation: model ,experimental equipment ,B-mode ,cosmic radiation ,cryogenics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,cosmic background radiation: detector ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,lens ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,FOS: Physical sciences ,LiteBIRD ,Polarization measurements ,Space telescopes ,Astrophysics::Cosmology and Extragalactic Astrophysics ,bolometer: superconductivity ,frequency: high ,Radio spectrum ,tensor scalar: ratio ,010309 optics ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,numerical calculations ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,detector: angular resolution ,Astrophysics::Galaxy Astrophysics ,Gravitational wave ,synchrotron radiation ,gravitational radiation: primordial ,Astronomy ,Physics::History of Physics ,optics ,detector: sensitivity ,13. Climate action ,Sky ,Satellite ,temperature: stability ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy. European collaborators acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement Nos. 772253, 819478, and 849169). The European Space Agency (ESA) has led a Concurrent Design Facility study, focused on the MHFT and Sub-Kelvin coolers, and funded Technology Research Programmes for “Large radii Half-Wave Plate (HWP) development” (contract number: 4000123266/18/NL/AF) and for the ‘Development of Large Anti-Reflection Coated Lenses for Passive (Sub)Millimeter-Wave Science Instruments” (contract number: 4000128517/19/NL/AS).
- Published
- 2020
- Full Text
- View/download PDF
10. LiteBIRD: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
- Author
-
Masashi Hazumi, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, R. Banjeri, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Paolo de Bernardis, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Fabio Columbro, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Jon E. Gudmundsson, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Sophie Henrot-Versillé, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Luca Lamagna, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Bruno Maffei, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Joshua Montgomery, Ludovic Montier, Gianluca Morgante, Baptiste Mot, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Fabio Noviello, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Giampaolo Pisano, Gianluca Polenta, Davide Poletti, Thomas Prouvé, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Megan Russell, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Giorgio Savini, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Samantha Stever, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Keith L. Thompson, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Masahiro Tsujimoto, Carole Tucker, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Benjamin Westbrook, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Hélium : du fondamental aux applications (NEEL - HELFA), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Lystrup, Makenzie, Hazumi, M, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banjeri, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, Noviello, F, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, and Zonca, A
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Physics beyond the Standard Model ,Cosmic microwave background ,LiteBIRD, cosmic inflation, cosmic microwave background, B-mode polarization, primordial gravi- tational waves, quantum gravity, space telescope ,cosmic background radiation: polarization ,detector: noise ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,expansion: multipole ,Cosmology ,General Relativity and Quantum Cosmology ,B-mode: primordial ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,general relativity ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,B-mode polarization ,media_common ,Physics ,new physics ,quantum mechanics ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,BICEP ,inflation: model ,High Energy Physics - Phenomenology ,error: statistical ,experimental equipment ,cryogenics ,power spectrum: angular dependence ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,readout ,Astrophysics::Earth and Planetary Astrophysics ,dust ,control system ,0210 nano-technology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,cosmic microwave background ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,cosmic inflation ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,primordial gravi- tational waves ,Cosmic background radiation ,space telescope ,Lagrangian point ,FOS: Physical sciences ,LiteBIRD ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,polarization: sensitivity ,010309 optics ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,0103 physical sciences ,ionization ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,cosmic background radiation: power spectrum ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Inflation (cosmology) ,synchrotron radiation ,primordial gravitational waves ,gravitational radiation: primordial ,Astronomy ,calibration ,Physics::History of Physics ,recombination ,detector: sensitivity ,angular resolution ,Sky ,quantum gravity ,gravitational radiation: emission ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Satellite ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,experimental results - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 µK-arcmin with a typical angular resolution of 0.5◦ at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy.
- Published
- 2020
- Full Text
- View/download PDF
11. The 1732 Surtseyan eruption of Eggøya, Jan Mayen, North Atlantic: deposits, distribution, chemistry and chronology
- Author
-
Ármann Höskuldsson, Rolf-Birger Pedersen, and Eirik Gjerløw
- Subjects
Volcanic hazards ,Paleontology ,Dense-rock equivalent ,Explosive eruption ,Surtseyan eruption ,Lateral eruption ,Geochemistry and Petrology ,Subaerial eruption ,Phreatomagmatic eruption ,Tephra ,Geology ,Seismology - Abstract
The island of Jan Mayen in the North Atlantic Ocean is home to the world’s northernmost active subaerial volcano, Beerenberg. Of the five known historical eruptions on the island, the locations of two eruptions (1732 and 1818) have not been accurately located. It is known that the 1732 and 1818 eruptions occurred on the south flank of Beerenberg, and several eruption sites have been proposed for these events. Here we show that the tuff cone of Eggoya on the SW flank of Beerenberg was the site of the 1732 eruption, based on interpretation of the deposits, field relations and historical sources. We further describe the deposits from the eruption and show that Eggoya is the largest explosive eruption described from Jan Mayen, emplacing at least at least 0.3–0.4 km3 (VEI 4) of basanitic tephra up to distances of at least 111 km from Jan Mayen and covering a minimum area of around 500 km2 within the 2-cm isopach. We also present our eruption scenario and show that this was an emergent Surtseyan eruption with activity shifting between tephra jetting, continuous uprush and more magmatic phases.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.