1. Hyaluronan-estradiol nanogels as potential drug carriers to target ER+ breast cancer cell line.
- Author
-
Paoletti L, Zoratto N, Benvenuto M, Nardozi D, Angiolini V, Mancini P, Masuelli L, Bei R, Frajese GV, Matricardi P, Nalli M, and Di Meo C
- Subjects
- Humans, Female, Drug Carriers chemistry, Hyaluronic Acid chemistry, Nanogels therapeutic use, Estradiol pharmacology, Docetaxel therapeutic use, Drug Delivery Systems, MCF-7 Cells, Cell Line, Tumor, Breast Neoplasms drug therapy, Breast Neoplasms pathology, Curcumin chemistry, Nanoparticles chemistry, Antineoplastic Agents chemistry
- Abstract
An innovative hyaluronan-based nano-delivery system is proposed for the active targeting towards ER+ breast cancer. Hyaluronic acid (HA), an endogenous and bioactive anionic polysaccharide, is functionalized with estradiol (ES), a sexual hormone involved in the development of some hormone-dependent tumors, to give an amphiphilic derivative (HA-ES) able to spontaneously self-assemble in water to form soft nanoparticles or nanogels (NHs). The synthetic strategy used to obtain the polymer derivatives and the physico-chemical properties of the obtained nanogels (ES-NHs) are reported. ES-NHs ability to entrap hydrophobic molecules has also been investigated, by loading curcumin (CUR) and docetaxel (DTX), both able to inhibit the growth of ER+ breast cancer. The formulations are studied for their capability to inhibit the growth of the MCF-7 cell line, thus evaluating their efficacy and potential as a selective drug delivery systems. Our results demonstrate that ES-NHs have not toxic effects on the cell line, and that both ES-NHs/CUR and ES-NHs/DTX treatments inhibit MCF-7 cell growth, with ES-NHs/DTX effect higher than that of free DTX. Our findings support the use of ES-NHs to deliver drugs to ER+ breast cancer cells, assuming a receptor-dependent targeting., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF