8 results on '"Gyapay G"'
Search Results
2. Publisher Correction: The DNA sequence and analysis of human chromosome 14.
- Author
-
Heilig R, Eckenberg R, Petit JL, Fonknechten N, Da Silva C, Cattolico L, Levy M, Barbe V, de Berardinis V, Ureta-Vidal A, Pelletier E, Vico V, Anthouard V, Rowen L, Madan A, Qin S, Sun H, Du H, Pepin K, Artiguenave F, Robert C, Cruaud C, Brüls T, Jaillon O, Friedlander L, Samson G, Brottier P, Cure S, Ségurens B, Anière F, Samain S, Crespeau H, Abbasi N, Aiach N, Boscus D, Dickhoff R, Dors M, Dubois I, Friedman C, Gouyvenoux M, James R, Madan A, Mairey-Estrada B, Mangenot S, Martins N, Ménard M, Oztas S, Ratcliffe A, Shaffer T, Trask B, Vacherie B, Bellemere C, Belser C, Besnard-Gonnet M, Bartol-Mavel D, Boutard M, Briez-Silla S, Combette S, Dufossé-Laurent V, Ferron C, Lechaplais C, Louesse C, Muselet D, Magdelenat G, Pateau E, Petit E, Sirvain-Trukniewicz P, Trybou A, Vega-Czarny N, Bataille E, Bluet E, Bordelais I, Dubois M, Dumont C, Guérin T, Haffray S, Hammadi R, Muanga J, Pellouin V, Robert D, Wunderle E, Gauguet G, Roy A, Sainte-Marthe L, Verdier J, Verdier-Discala C, Hillier L, Fulton L, McPherson J, Matsuda F, Wilson R, Scarpelli C, Gyapay G, Wincker P, Saurin W, Quétier F, Waterston R, Hood L, and Weissenbach J
- Published
- 2023
- Full Text
- View/download PDF
3. Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps.
- Author
-
Legeai F, Santos BF, Robin S, Bretaudeau A, Dikow RB, Lemaitre C, Jouan V, Ravallec M, Drezen JM, Tagu D, Baudat F, Gyapay G, Zhou X, Liu S, Webb BA, Brady SG, and Volkoff AN
- Subjects
- Animals, Species Specificity, Whole Genome Sequencing, Evolution, Molecular, Genome, Viral, Host Microbial Interactions, Polydnaviridae genetics, Wasps virology
- Abstract
Background: Polydnaviruses (PDVs) are mutualistic endogenous viruses inoculated by some lineages of parasitoid wasps into their hosts, where they facilitate successful wasp development. PDVs include the ichnoviruses and bracoviruses that originate from independent viral acquisitions in ichneumonid and braconid wasps respectively. PDV genomes are fully incorporated into the wasp genomes and consist of (1) genes involved in viral particle production, which derive from the viral ancestor and are not encapsidated, and (2) proviral segments harboring virulence genes, which are packaged into the viral particle. To help elucidating the mechanisms that have facilitated viral domestication in ichneumonid wasps, we analyzed the structure of the viral insertions by sequencing the whole genome of two ichnovirus-carrying wasp species, Hyposoter didymator and Campoletis sonorensis., Results: Assemblies with long scaffold sizes allowed us to unravel the organization of the endogenous ichnovirus and revealed considerable dispersion of the viral loci within the wasp genomes. Proviral segments contained species-specific sets of genes and occupied distinct genomic locations in the two ichneumonid wasps. In contrast, viral machinery genes were organized in clusters showing highly conserved gene content and order, with some loci located in collinear wasp genomic regions. This genomic architecture clearly differs from the organization of PDVs in braconid wasps, in which proviral segments are clustered and viral machinery elements are more dispersed., Conclusions: The contrasting structures of the two types of ichnovirus genomic elements are consistent with their different functions: proviral segments are vehicles for virulence proteins expected to adapt according to different host defense systems, whereas the genes involved in virus particle production in the wasp are likely more stable and may reflect ancestral viral architecture. The distinct genomic architectures seen in ichnoviruses versus bracoviruses reveal different evolutionary trajectories that have led to virus domestication in the two wasp lineages.
- Published
- 2020
- Full Text
- View/download PDF
4. Cotesia congregata Bracovirus Circles Encoding PTP and Ankyrin Genes Integrate into the DNA of Parasitized Manduca sexta Hemocytes.
- Author
-
Chevignon G, Periquet G, Gyapay G, Vega-Czarny N, Musset K, Drezen JM, and Huguet E
- Subjects
- Animals, DNA, Viral genetics, Hemocytes metabolism, Manduca genetics, Viral Proteins genetics, DNA, Viral metabolism, Hemocytes virology, Manduca virology, Polydnaviridae physiology, Viral Proteins metabolism, Virus Integration physiology
- Abstract
Polydnaviruses (PDVs) are essential for the parasitism success of tens of thousands of species of parasitoid wasps. PDVs are present in wasp genomes as proviruses, which serve as the template for the production of double-stranded circular viral DNA carrying virulence genes that are injected into lepidopteran hosts. PDV circles do not contain genes coding for particle production, thereby impeding viral replication in caterpillar hosts during parasitism. Here, we investigated the fate of PDV circles of Cotesia congregata bracovirus during parasitism of the tobacco hornworm, Manduca sexta , by the wasp Cotesia congregata Sequences sharing similarities with host integration motifs (HIMs) of Microplitis demolitor bracovirus (MdBV) circles involved in integration into DNA could be identified in 12 CcBV circles, which encode PTP and VANK gene families involved in host immune disruption. A PCR approach performed on a subset of these circles indicated that they persisted in parasitized M. sexta hemocytes as linear forms, possibly integrated in host DNA. Furthermore, by using a primer extension capture method based on these HIMs and high-throughput sequencing, we could show that 8 out of 9 circles tested were integrated in M. sexta hemocyte genomic DNA and that integration had occurred specifically using the HIM, indicating that an HIM-mediated specific mechanism was involved in their integration. Investigation of BV circle insertion sites at the genome scale revealed that certain genomic regions appeared to be enriched in BV insertions, but no specific M. sexta target site could be identified. IMPORTANCE The identification of a specific and efficient integration mechanism shared by several bracovirus species opens the question of its role in braconid parasitoid wasp parasitism success. Indeed, results obtained here show massive integration of bracovirus DNA in somatic immune cells at each parasitism event of a caterpillar host. Given that bracoviruses do not replicate in infected cells, integration of viral sequences in host DNA might allow the production of PTP and VANK virulence proteins within newly dividing cells of caterpillar hosts that continue to develop during parasitism. Furthermore, this integration process could serve as a basis to understand how PDVs mediate the recently identified gene flux between parasitoid wasps and Lepidoptera and the frequency of these horizontal transfer events in nature., (Copyright © 2018 American Society for Microbiology.)
- Published
- 2018
- Full Text
- View/download PDF
5. Genetic footprints of adaptive divergence in the bracovirus of Cotesia sesamiae identified by targeted resequencing.
- Author
-
Gauthier J, Gayral P, Le Ru BP, Jancek S, Dupas S, Kaiser L, Gyapay G, and Herniou EA
- Subjects
- Adaptation, Physiological genetics, Animals, Genome genetics, High-Throughput Nucleotide Sequencing, Hymenoptera growth & development, Hymenoptera virology, Polydnaviridae pathogenicity, Host-Parasite Interactions genetics, Hymenoptera genetics, Polydnaviridae genetics
- Abstract
The African parasitoid wasp Cotesia sesamiae is a generalist species structured in locally adapted populations showing differences in host range. The recent discovery of Cotesia typhae, a specialist, sister species to C. sesamiae, provides a good framework to study the genetic determinants of parasitoid host range. To investigate the genomic bases of divergence between these populations and species, we used a targeted sequencing approach on 24 samples. We targeted the bracovirus genomic region encoding virulence genes involved in the interaction with the lepidopteran hosts of the wasps. High sequencing coverage was obtained for all samples, allowing the study of genetic variation between wasp populations and species. By combining population genetic estimations, such as nucleotide diversity (π), relative differentiation (F
ST ) and absolute divergence (dxy ), with branch-site dN/dS measures, we identified six of 98 bracovirus genes showing significant divergence and evidence of positive selection. These genes, belonging to different gene families, are potentially involved in host adaptation and in the specialization process. Fine-scale analyses of genetic variation also revealed mutations and large deletions in certain genes inducing pseudogenization and loss of function. The image emerging from these results is that adaptation mediated by bracovirus genes happens through selection of particularly adaptive alleles and loss of nonadaptive genes. These results highlight the central role of the bracovirus in the molecular interactions between the wasps and their hosts and in the evolutionary processes of specialization., (© 2018 John Wiley & Sons Ltd.)- Published
- 2018
- Full Text
- View/download PDF
6. Deciphering the Theobroma cacao self-incompatibility system: from genomics to diagnostic markers for self-compatibility.
- Author
-
Lanaud C, Fouet O, Legavre T, Lopes U, Sounigo O, Eyango MC, Mermaz B, Da Silva MR, Loor Solorzano RG, Argout X, Gyapay G, Ebaiarrey HE, Colonges K, Sanier C, Rivallan R, Mastin G, Cryer N, Boccara M, Verdeil JL, Efombagn Mousseni IB, Peres Gramacho K, and Clément D
- Subjects
- Cacao genetics, Chromosome Mapping, Cacao physiology, Genetic Linkage, Genome-Wide Association Study, Self-Incompatibility in Flowering Plants genetics
- Abstract
Cocoa self-compatibility is an important yield factor and has been described as being controlled by a late gameto-sporophytic system expressed only at the level of the embryo sac. It results in gametic non-fusion and involves several loci. In this work, we identified two loci, located on chromosomes 1 and 4 (CH1 and CH4), involved in cocoa self-incompatibility by two different processes. Both loci are responsible for gametic selection, but only one (the CH4 locus) is involved in the main fruit drop. The CH1 locus acts prior to the gamete fusion step and independently of the CH4 locus. Using fine-mapping and genome-wide association studies, we focused analyses on restricted regions and identified candidate genes. Some of them showed a differential expression between incompatible and compatible reactions. Immunolocalization experiments provided evidence of CH1 candidate genes expressed in ovule and style tissues. Highly polymorphic simple sequence repeat (SSR) diagnostic markers were designed in the CH4 region that had been identified by fine-mapping. They are characterized by a strong linkage disequilibrium with incompatibility alleles, thus allowing the development of efficient diagnostic markers predicting self-compatibility and fruit setting according to the presence of specific alleles or genotypes. SSR alleles specific to self-compatible Amelonado and Criollo varieties were also identified, thus allowing screening for self-compatible plants in cocoa populations., (© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.)
- Published
- 2017
- Full Text
- View/download PDF
7. Mutations in ACTRT1 and its enhancer RNA elements lead to aberrant activation of Hedgehog signaling in inherited and sporadic basal cell carcinomas.
- Author
-
Bal E, Park HS, Belaid-Choucair Z, Kayserili H, Naville M, Madrange M, Chiticariu E, Hadj-Rabia S, Cagnard N, Kuonen F, Bachmann D, Huber M, Le Gall C, Côté F, Hanein S, Rosti RÖ, Aslanger AD, Waisfisz Q, Bodemer C, Hermine O, Morice-Picard F, Labeille B, Caux F, Mazereeuw-Hautier J, Philip N, Levy N, Taieb A, Avril MF, Headon DJ, Gyapay G, Magnaldo T, Fraitag S, Crollius HR, Vabres P, Hohl D, Munnich A, and Smahi A
- Subjects
- Animals, CRISPR-Cas Systems, Chromatin Immunoprecipitation, Enhancer Elements, Genetic genetics, Female, Gene Expression Profiling, Hedgehog Proteins metabolism, High-Throughput Nucleotide Sequencing, Humans, Male, Mice, Mice, Nude, Mutation, Neoplasm Transplantation, Polymerase Chain Reaction, Sequence Analysis, DNA, Signal Transduction, Carcinoma, Basal Cell genetics, Hypotrichosis genetics, Microfilament Proteins genetics, Skin Neoplasms genetics
- Abstract
Basal cell carcinoma (BCC), the most common human cancer, results from aberrant activation of the Hedgehog signaling pathway. Although most cases of BCC are sporadic, some forms are inherited, such as Bazex-Dupré-Christol syndrome (BDCS)-a cancer-prone genodermatosis with an X-linked, dominant inheritance pattern. We have identified mutations in the ACTRT1 gene, which encodes actin-related protein T1 (ARP-T1), in two of the six families with BDCS that were examined in this study. High-throughput sequencing in the four remaining families identified germline mutations in noncoding sequences surrounding ACTRT1. These mutations were located in transcribed sequences encoding enhancer RNAs (eRNAs) and were shown to impair enhancer activity and ACTRT1 expression. ARP-T1 was found to directly bind to the GLI1 promoter, thus inhibiting GLI1 expression, and loss of ARP-T1 led to activation of the Hedgehog pathway in individuals with BDCS. Moreover, exogenous expression of ACTRT1 reduced the in vitro and in vivo proliferation rates of cell lines with aberrant activation of the Hedgehog signaling pathway. In summary, our study identifies a disease mechanism in BCC involving mutations in regulatory noncoding elements and uncovers the tumor-suppressor properties of ACTRT1.
- Published
- 2017
- Full Text
- View/download PDF
8. Microbial Degradation of a Recalcitrant Pesticide: Chlordecone.
- Author
-
Chaussonnerie S, Saaidi PL, Ugarte E, Barbance A, Fossey A, Barbe V, Gyapay G, Brüls T, Chevallier M, Couturat L, Fouteau S, Muselet D, Pateau E, Cohen GN, Fonknechten N, Weissenbach J, and Le Paslier D
- Abstract
Chlordecone (Kepone®) is a synthetic organochlorine insecticide (C
10 Cl10 O) used worldwide mostly during the 1970 and 1980s. Its intensive application in the French West Indies to control the banana black weevil Cosmopolites sordidus led to a massive environmental pollution. Persistence of chlordecone in soils and water for numerous decades even centuries causes global public health and socio-economic concerns. In order to investigate the biodegradability of chlordecone, microbial enrichment cultures from soils contaminated by chlordecone or other organochlorines and from sludge of a wastewater treatment plant have been conducted. Different experimental procedures including original microcosms were carried out anaerobically over long periods of time. GC-MS monitoring resulted in the detection of chlorinated derivatives in several cultures, consistent with chlordecone biotransformation. More interestingly, disappearance of chlordecone (50 μg/mL) in two bacterial consortia was concomitant with the accumulation of a major metabolite of formula C9 Cl5 H3 (named B1) as well as two minor metabolites C10 Cl9 HO (named A1) and C9 Cl4 H4 (named B3). Finally, we report the isolation and the complete genomic sequences of two new Citrobacter isolates, closely related to Citrobacter amalonaticus , and that were capable of reproducing chlordecone transformation. Further characterization of these Citrobacter strains should yield deeper insights into the mechanisms involved in this transformation process.- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.