1. Comparison of software packages for detecting unannotated translated small open reading frames by Ribo-seq
- Author
-
Tong, Gregory, Hah, Nasun, and Martinez, Thomas F
- Subjects
Biological Sciences ,Bioinformatics and Computational Biology ,Genetics ,Human Genome ,Open Reading Frames ,Software ,Ribosomes ,Molecular Sequence Annotation ,Humans ,Protein Biosynthesis ,Computational Biology ,Ribosome Profiling ,Ribo-seq ,microprotein ,smORF annotation ,translation ,Biochemistry and Cell Biology ,Computation Theory and Mathematics ,Other Information and Computing Sciences ,Bioinformatics ,Biochemistry and cell biology ,Bioinformatics and computational biology - Abstract
Accurate and comprehensive annotation of microprotein-coding small open reading frames (smORFs) is critical to our understanding of normal physiology and disease. Empirical identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq). While effective, published Ribo-seq datasets can vary drastically in quality and different analysis tools are frequently employed. Here, we examine the impact of these factors on identifying translated smORFs. We compared five commonly used software tools that assess open reading frame translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH) and found surprisingly low agreement across all tools. Only ~2% of smORFs were called translated by all five tools, and ~15% by three or more tools when assessing the same high-resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~74% agreement across all five tools. We also found that some tools are strongly biased against low-resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage revealed that smORFs detected by more than one tool tend to have higher translation levels and higher fractions of in-frame reads, consistent with what was observed for annotated genes. Together these results support employing multiple tools to identify the most confident microprotein-coding smORFs and choosing the tools based on the quality of the dataset and the planned downstream characterization experiments of the predicted smORFs.
- Published
- 2024