100 results on '"Henning Zettergren"'
Search Results
2. Efficient stabilization of cyanonaphthalene by fast radiative cooling and implications for the resilience of small PAHs in interstellar clouds
- Author
-
Mark H. Stockett, James N. Bull, Henrik Cederquist, Suvasthika Indrajith, MingChao Ji, José E. Navarro Navarrete, Henning T. Schmidt, Henning Zettergren, and Boxing Zhu
- Subjects
Science - Abstract
Abstract After decades of searching, astronomers have recently identified specific Polycyclic Aromatic Hydrocarbons (PAHs) in space. Remarkably, the observed abundance of cyanonaphthalene (CNN, C10H7CN) in the Taurus Molecular Cloud (TMC-1) is six orders of magnitude higher than expected from astrophysical modeling. Here, we report unimolecular dissociation and radiative cooling rate coefficients of the 1-CNN isomer in its cationic form. These results are based on measurements of the time-dependent neutral product emission rate and kinetic energy release distributions produced from an ensemble of internally excited 1-CNN+ studied in an environment similar to that in interstellar clouds. We find that Recurrent Fluorescence – radiative relaxation via thermally populated electronic excited states – efficiently stabilizes 1-CNN+, owing to a large enhancement of the electronic transition probability by vibronic coupling. Our results help explain the anomalous abundance of CNN in TMC-1 and challenge the widely accepted picture of rapid destruction of small PAHs in space.
- Published
- 2023
- Full Text
- View/download PDF
3. High-precision electron affinity of oxygen
- Author
-
Moa K. Kristiansson, Kiattichart Chartkunchand, Gustav Eklund, Odd M. Hole, Emma K. Anderson, Nathalie de Ruette, Magdalena Kamińska, Najeeb Punnakayathil, José E. Navarro-Navarrete, Stefan Sigurdsson, Jon Grumer, Ansgar Simonsson, Mikael Björkhage, Stefan Rosén, Peter Reinhed, Mikael Blom, Anders Källberg, John D. Alexander, Henrik Cederquist, Henning Zettergren, Henning T. Schmidt, and Dag Hanstorp
- Subjects
Science - Abstract
High-precision measurements are useful to find isotopic shifts and electron correlation. Here the authors measure electron affinity and hyperfine splitting of atomic oxygen with higher precision than previous studies.
- Published
- 2022
- Full Text
- View/download PDF
4. Stability of C59 Knockout Fragments from Femtoseconds to Infinity
- Author
-
Michael Gatchell, Naemi Florin, Suvasthika Indrajith, José Eduardo Navarro Navarrete, Paul Martini, MingChao Ji, Peter Reinhed, Stefan Rosén, Ansgar Simonsson, Henrik Cederquist, Henning T. Schmidt, and Henning Zettergren
- Subjects
Interstellar molecules ,Fullerenes ,Collision physics ,Ion-storage rings ,Astrophysics ,QB460-466 - Abstract
We have studied the stability of C _59 anions as a function of time, from their formation on femtosecond timescales to their stabilization on second timescales and beyond, using a combination of theory and experiments. The ${{\rm{C}}}_{59}^{-}$ fragments were produced in collisions between C _60 fullerene anions and neutral helium gas at a velocity of 90 km s ^−1 (corresponding to a collision energy of 166 eV in the center-of-mass frame). The fragments were then stored in a cryogenic ion beam storage ring at the DESIREE facility, where they were followed for up to 1 minute. Classical molecular dynamics simulations were used to determine the reaction cross section and the excitation energy distributions of the products formed in these collisions. We find that about 15% of the ${{\rm{C}}}_{59}^{-}$ ions initially stored in the ring are intact after about 100 ms and that this population then remains intact indefinitely. This means that C _60 fullerenes exposed to energetic atoms and ions, such as stellar winds and shock waves, will produce stable, highly reactive products, like C _59 , that are fed into interstellar chemical reaction networks.
- Published
- 2024
- Full Text
- View/download PDF
5. Open questions on the interaction dynamics of molecules and clusters in the gas phase
- Author
-
Michael Gatchell and Henning Zettergren
- Subjects
Chemistry ,QD1-999 - Abstract
Emerging experimental techniques combined with theoretical advances allow unprecedented studies of the dynamics of gas phase molecules and clusters induced in interactions with photons, electrons, or heavy particles. Here, the authors highlight recent advances, key open questions, and challenges in this field of research with focus on experimental studies of dynamics of ions stored on millisecond timescales and beyond, and its applications in astrochemistry and astronomy.
- Published
- 2022
- Full Text
- View/download PDF
6. Survival of polycyclic aromatic hydrocarbon knockout fragments in the interstellar medium
- Author
-
Michael Gatchell, João Ameixa, MingChao Ji, Mark H. Stockett, Ansgar Simonsson, Stephan Denifl, Henrik Cederquist, Henning T. Schmidt, and Henning Zettergren
- Subjects
Science - Abstract
Ion storage rings allow reactions to be studied over orders of magnitude in time, bridging the gap between typical experimental and astronomical timescales. Here the authors observe that polycyclic aromatic hydrocarbon fragments produced upon collision with He atoms at velocities typical of stellar winds and supernova shockwaves remain intact up to second timescales, thus may play an important role in interstellar chemistry.
- Published
- 2021
- Full Text
- View/download PDF
7. Experimental lifetime of the a^{1}Δ electronically excited state of CH^{−}
- Author
-
Gustav Eklund, Moa K. Kristiansson, K. C. Chartkunchand, Emma K. Anderson, Malcolm Simpson, Roland Wester, Henning T. Schmidt, Henning Zettergren, Henrik Cederquist, and Wolf D. Geppert
- Subjects
Physics ,QC1-999 - Abstract
By repeatedly probing the a^{1}Δ excited state and the X^{3}Σ^{−} ground-state populations in a beam of CH^{−} ions stored in a cryogenic ion-beam storage ring for 100 s, we extract an intrinsic lifetime of 14.9±0.5 s for this excited state. This is far longer than all earlier experimental and theoretical results, exposing large difficulties in measuring and calculating slow decays and the need for benchmark quality experiments.
- Published
- 2022
- Full Text
- View/download PDF
8. Efficient radiative cooling of tetracene cations C18H12+: absolute recurrent fluorescence rates as a function of internal energy
- Author
-
Jérôme Bernard, MingChao Ji, Suvasthika Indrajith, Mark H. Stockett, José E. Navarro Navarrete, Naoko Kono, Henrik Cederquist, Serge Martin, Henning T. Schmidt, and Henning Zettergren
- Subjects
General Physics and Astronomy ,Physical and Theoretical Chemistry - Abstract
High recurrent fluorescence rates of tetracene cations, C18H12, measured with two electrostatic ion rings, DESIREE and Mini-Ring, lead to much more effective radiative cooling than previously investigated PAH cations.
- Published
- 2023
9. The mutual neutralization of hydronium and hydroxide.
- Author
-
Bogot, Alon, Poline, Mathias, MingChao Ji, Dochain, Arnaud, Simonsson, Ansgar, Rosén, Stefan, Henning Zettergren, Schmidt, Henning T., Thomas, Richard D., and Strasser, Daniel
- Published
- 2024
- Full Text
- View/download PDF
10. Cooling dynamics of energized naphthalene and azulene radical cations
- Author
-
Jason W. L. Lee, Mark H. Stockett, Eleanor K. Ashworth, José E. Navarro Navarrete, Eva Gougoula, Diksha Garg, MingChao Ji, Boxing Zhu, Suvasthika Indrajith, Henning Zettergren, Henning T. Schmidt, and James N. Bull
- Subjects
General Physics and Astronomy ,ddc:530 ,Physical and Theoretical Chemistry - Abstract
The journal of chemical physics 158, 174305 (2023). doi:10.1063/5.0147456, Naphthalene and azulene are isomeric polycyclic aromatic hydrocarbons (PAHs) and are topical in the context of astrochemistry due to the recent discovery of substituted naphthalenes in the Taurus Molecular Cloud-1 (TMC-1). Here, the thermal- and photo-induced isomerization, dissociation, and radiative cooling dynamics of energized (vibrationally hot) naphthalene (Np$^+$) and azulene (Az$^+$) radical cations, occurring over the microsecond to seconds timescale, are investigated using a cryogenic electrostatic ion storage ring, affording “molecular cloud in a box” conditions. Measurement of the cooling dynamics and kinetic energy release distributions for neutrals formed through dissociation, until several seconds after hot ion formation, are consistent with the establishment of a rapid (sub-microsecond) Np$^+ ⇌$ Az$^+$ quasi-equilibrium. Consequently, dissociation by C$_2$H$_2$-elimination proceeds predominantly through common Az$^+$ decomposition pathways. Simulation of the isomerization, dissociation, recurrent fluorescence, and infrared cooling dynamics using a coupled master equation combined with high-level potential energy surface calculations [CCSD(T)/cc-pVTZ], reproduce the trends in the measurements. The data show that radiative cooling via recurrent fluorescence, predominately through the Np$^+$ D$_0$ ← D$_2$ transition, efficiently quenches dissociation for vibrational energies up to ≈1 eV above dissociation thresholds. Our measurements support the suggestion that small cations, such as naphthalene, may be more abundant in space than previously thought. The strategy presented in this work could be extended to fingerprint the cooling dynamics of other PAH ions for which isomerization is predicted to precede dissociation., Published by American Institute of Physics, Melville, NY
- Published
- 2023
11. Electron and ion spectroscopy of the cyclo-alanine–alanine dipeptide
- Author
-
Jacopo Chiarinelli, Darío Barreiro-Lage, Paola Bolognesi, Robert Richter, Henning Zettergren, Mark H. Stockett, Sergio Díaz-Tendero, and Lorenzo Avaldi
- Subjects
Alanine ,astrochemistry ,Photoelectron Spectroscopy ,General Physics and Astronomy ,Electrons ,cyclo dipeptides ,photoionisation ,molecular dynamics simulations ,Dipeptides ,Molecular Dynamics Simulation ,Physical and Theoretical Chemistry ,PEPICO ,quantum chemistry simulations - Abstract
The VUV photoionisation and photofragmentation of cyclo-alanine-alanine (cAA) has been studied in a joint experimental and theoretical work. The photoelectron spectrum and the photoelectronphotoion coincidence (PEPICO) measurements, which enable control of the energy being deposited, combined with quantum chemistry calculations, provide direct insight into the cAA molecular stability after photoionisation. The analysis of the ion-neutral coincidence experiments with the molecular dynamics simulations and the exploration of the potential energy surface allows a complete identification of the fragmentation pathways. It has been found that the fragmentation always start with the ring opening through the C–C bond cleavage, followed by release of neutral moieties CO or HNCO.
- Published
- 2022
12. PDRs4All: A JWST Early Release Science Program on Radiative Feedback from Massive Stars
- Author
-
Olivier Berné, Émilie Habart, Els Peeters, Alain Abergel, Edwin A. Bergin, Jeronimo Bernard-Salas, Emeric Bron, Jan Cami, Emmanuel Dartois, Asunción Fuente, Javier R. Goicoechea, Karl D. Gordon, Yoko Okada, Takashi Onaka, Massimo Robberto, Markus Röllig, Alexander G. G. M. Tielens, Sílvia Vicente, Mark G. Wolfire, Felipe Alarcón, C. Boersma, Amélie Canin, Ryan Chown, Daniel Dicken, David Languignon, Romane Le Gal, Marc W. Pound, Boris Trahin, Thomas Simmer, Ameek Sidhu, Dries Van De Putte, Sara Cuadrado, Claire Guilloteau, Alexandros Maragkoudakis, Bethany R. Schefter, Thiébaut Schirmer, Stéphanie Cazaux, Isabel Aleman, Louis Allamandola, Rebecca Auchettl, Giuseppe Antonio Baratta, Salma Bejaoui, Partha P. Bera, Goranka Bilalbegović, John H. Black, Francois Boulanger, Jordy Bouwman, Bernhard Brandl, Philippe Brechignac, Sandra Brünken, Andrew Burkhardt, Alessandra Candian, Jose Cernicharo, Marin Chabot, Shubhadip Chakraborty, Jason Champion, Sean W. J. Colgan, Ilsa R. Cooke, Audrey Coutens, Nick L. J. Cox, Karine Demyk, Jennifer Donovan Meyer, Cécile Engrand, Sacha Foschino, Pedro García-Lario, Lisseth Gavilan, Maryvonne Gerin, Marie Godard, Carl A. Gottlieb, Pierre Guillard, Antoine Gusdorf, Patrick Hartigan, Jinhua He, Eric Herbst, Liv Hornekaer, Cornelia Jäger, Eduardo Janot-Pacheco, Christine Joblin, Michael Kaufman, Francisca Kemper, Sarah Kendrew, Maria S. Kirsanova, Pamela Klaassen, Collin Knight, Sun Kwok, Álvaro Labiano, Thomas S.-Y. Lai, Timothy J. Lee, Bertrand Lefloch, Franck Le Petit, Aigen Li, Hendrik Linz, Cameron J. Mackie, Suzanne C. Madden, Joëlle Mascetti, Brett A. McGuire, Pablo Merino, Elisabetta R. Micelotta, Karl Misselt, Jon A. Morse, Giacomo Mulas, Naslim Neelamkodan, Ryou Ohsawa, Alain Omont, Roberta Paladini, Maria Elisabetta Palumbo, Amit Pathak, Yvonne J. Pendleton, Annemieke Petrignani, Thomas Pino, Elena Puga, Naseem Rangwala, Mathias Rapacioli, Alessandra Ricca, Julia Roman-Duval, Joseph Roser, Evelyne Roueff, Gaël Rouillé, Farid Salama, Dinalva A. Sales, Karin Sandstrom, Peter Sarre, Ella Sciamma-O’Brien, Kris Sellgren, Matthew J. Shannon, Sachindev S. Shenoy, David Teyssier, Richard D. Thomas, Aditya Togi, Laurent Verstraete, Adolf N. Witt, Alwyn Wootten, Nathalie Ysard, Henning Zettergren, Yong Zhang, Ziwei E. Zhang, Junfeng Zhen, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), University of Western Ontario (UWO), Carl Sagan Center, SETI Institute, University of Michigan [Ann Arbor], University of Michigan System, Analytic and Computational Research, Inc. - Earth Sciences (ACRI-ST), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Observatorio Astronomico Nacional, Madrid, Instituto de Física Fundamental [Madrid] (IFF), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Universiteit Gent = Ghent University (UGENT), Space Telescope Science Institute (STSci), Physikalisches Institut [Köln], Universität zu Köln = University of Cologne, Meisei University, The University of Tokyo (UTokyo), Leiden Observatory [Leiden], Universiteit Leiden, Johns Hopkins University (JHU), Instituto de Astrofísica e Ciências do Espaço (IASTRO), University of Maryland [College Park], University of Maryland System, NASA Ames Research Center (ARC), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Signal et Communications (IRIT-SC), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Institut National Polytechnique (Toulouse) (Toulouse INP), Onsala Space Observatory (OSO), Chalmers University of Technology [Göteborg], Delft University of Technology (TU Delft), Universidade Federal de Itajubá, Bay Area Environmental Research Institute (BAER), Australian Synchrotron [Clayton], INAF - Osservatorio Astrofisico di Catania (OACT), Istituto Nazionale di Astrofisica (INAF), University of Zagreb, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), University of Colorado [Boulder], Institute for Molecules and Materials [Nijmegen], Radboud University [Nijmegen], Wellesley College, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), University of British Columbia (UBC), National Radio Astronomy Observatory [Charlottesville] (NRAO), National Radio Astronomy Observatory (NRAO), European Space Astronomy Centre (ESAC), Agence Spatiale Européenne = European Space Agency (ESA), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Rice University [Houston], Yunnan Observatories, Chinese Academy of Sciences [Changchun Branch] (CAS), Universidad de Chile = University of Chile [Santiago] (UCHILE), University of Virginia, Aarhus University [Aarhus], Friedrich-Schiller-Universität = Friedrich Schiller University Jena [Jena, Germany], Instituto de Astronomia, Geofísica e Ciências Atmosféricas [São Paulo] (IAG), Universidade de São Paulo = University of São Paulo (USP), San Jose State University [San Jose] (SJSU), European Southern Observatory (ESO), Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), Academia Sinica, Institute of Astronomy of the Russian Academy of Sciences (INASAN), Russian Academy of Sciences [Moscow] (RAS), UK Astronomy Technology Centre (UK ATC), Science and Technology Facilities Council (STFC), Telespazio, Services par satellites, Infrared Processing and Analysis Center (IPAC), California Institute of Technology (CALTECH), University of Missouri [Columbia] (Mizzou), University of Missouri System, Max Planck Institute for Astronomy (MPIA), CAS Key Laboratory of Crust–Mantle Materials and Environments [Hefei], School of Earth and Space Sciences [Hefei], University of Science and Technology of China [Hefei] (USTC)-University of Science and Technology of China [Hefei] (USTC)-Chinese Academy of Sciences [Beijing] (CAS), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), University of California [Berkeley] (UC Berkeley), University of California (UC), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Massachusetts Institute of Technology (MIT), Instituto de Ciencia de Materiales de Madrid (ICMM), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Steward Observatory, University of Arizona, INAF - Osservatorio Astronomico di Cagliari (OAC), United Arab Emirates University (UAEU), National Astronomical Observatory of Japan (NAOJ), Banaras Hindu University [Varanasi] (BHU), University of Amsterdam [Amsterdam] (UvA), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Universidade Federal do Rio Grande do Sul [Porto Alegre] (UFRGS), University of California [San Diego] (UC San Diego), University of Nottingham, UK (UON), Ohio State University [Columbus] (OSU), Space Science Institute [Boulder] (SSI), Stockholm University, Texas State University, Ritter Astrophysical Research Center, University of Toledo, National Sun Yat-Sen University (NSYSU), Star and Planet Formation Laboratory, ITA, USA, GBR, FRA, DEU, ESP, AUS, BEL, BRA, CHL, TWN, HRV, DNK, JPN, IND, NLD, PRT, CHN, RUS, SWE, National Aeronautics and Space Administration (US), University of Maryland, University of Michigan, Centre National de la Recherche Scientifique (France), Centre National D'Etudes Spatiales (France), Natural Sciences and Engineering Research Council of Canada, Ministerio de Ciencia e Innovación (España), German Research Foundation, Japan Society for the Promotion of Science, San José State University Research Foundation, Berné, Olivier, Habart, Émilie, Peeters, Els, Abergel, Alain, Bergin, Edwin A., Bernard-Salas, Jeronimo, Bron, Emeric, Cami, Jan, Dartois, Emmanuel, Fuente, Asunción, Goicoechea, Javier R., Gordon, Karl D., Okada, Yoko, Onaka, Takashi, Robberto, Massimo, Röllig, Markus, Tielens, Alexander G.G.M., Vicente, Sílvia, Wolfire, Mark G., Alarcón, Felipe, Boersma, C., Canin, Amélie, Chown, Ryan, Dicken, Daniel, Le Gal, Romane, Pound, Marc W., Trahin, Boris, Sidhu, Ameek, Van De Putte, Dries, Cuadrado, Sara, Guilloteau, Claire, Maragkoudakis, Alexandros, Schefter, Bethany R., Schirmer, Thiébaut, Aleman, Isabel, Allamandola, Louis, Auchettl, Rebecca, Antonio Baratta, Giuseppe, Bejaoui, Salma, Bera, Partha P., Bilalbegović, Goranka, Black, John H., Boulanger, Francois, Bouwman, Jordy, Brandl, Bernhard, Brünken, Sandra, Burkhardt, Andrew, Candian, Alessandra, Cernicharo, José, Chakraborty, Shubhadip, Champion, Jason, Colgan, Sean W.J., Cooke, Ilsa R., Coutens, Audrey, Cox, Nick L.J., Demyk, Karine, Donovan Meyer, Jennifer, Engrand, Cécile, Foschino, Sacha, Gavilan, Lisseth, Gerin, Maryvonne, Godard, Marie, Gottlieb, Carl A., Guillard, Pierre, Gusdorf, Antoine, Hartigan, Patrick, He, Jinhua, Herbst, Eric, Hornekaer, Liv, Janot-Pacheco, Eduardo, Joblin, Christine, Kaufman, Michael, Kemper, Francisca, Kendrew, Sarah, Kirsanova, Maria S., Klaassen, Pamela, Knight, Collin, Kwok, Sun, Labiano, Álvaro, Lai, Thomas S.Y., Lee, Timothy J., Lefloch, Bertrand, Le Petit, Franck, Li, Aigen, Linz, Hendrik, MacKie, Cameron J., Madden, Suzanne C., Mascetti, Joëlle, McGuire, Brett A., Merino, Pablo, Micelotta, Elisabetta R., Morse, Jon A., Molecular Spectroscopy (HIMS, FNWI), and HIMS (FNWI)
- Subjects
Gaseous Nebulae ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,FELIX Infrared and Terahertz Spectroscopy ,Star Forming Regions ,Astrophysics - Astrophysics of Galaxies ,Infrared Telescopes ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Solar and Stellar Astrophysics ,[INFO]Computer Science [cs] ,Photodissociation Regions ,Astrophysics::Earth and Planetary Astrophysics ,Polycyclic Aromatic Hydrocarbons ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,James Webb Space Telescope (JWST) ,Photo-Dissociation Regions (PDRs) ,Massive stars ,Orion Bar ,MIRI ,NIRSpec ,NIRCam ,Astrophysics::Galaxy Astrophysics - Abstract
22 pags., 8 figs., 1 tab., Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter-and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations., Support for JWST-ERS program ID 1288 was provided through grants from the STScI under NASA contract NAS5-03127 to STScI (K.G., D.V.D.P., M.R.), Univ. of Maryland (M.W., M.P.), Univ. of Michigan (E.B., F.A.), and Univ. of Toledo (T.S.-Y.L.). O.B. and E.H. are supported by the Programme National “Physique et Chimie du Milieu Interstellaire” (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNES, and through APR grants 6315 and 6410 provided by CNES. E. P. and J.C. acknowledge support from the National Science and Engineering Council of Canada (NSERC) Discovery Grant program (RGPIN-2020-06434 and RGPIN-2021-04197 respectively). E.P. acknowledges support from a Western Strategic Support Accelerator Grant (ROLA ID 0000050636). J.R.G. and S.C. thank the Spanish MCINN for funding support under grant PID2019-106110GB-I00. Work by M.R. and Y.O. is carried out within the Collaborative Research Centre 956, subproject C1, funded by the Deutsche Forschungsgemeinschaft (DFG)—project ID 184018867. T.O. acknowledges support from JSPS Bilateral Program, grant No. 120219939. M.P. and M.W. acknowledge support from NASA Astrophysics Data Analysis Program award #80NSSC19K0573. C.B. is grateful for an appointment at NASA Ames Research Center through the San José State University Research Foundation (NNX17AJ88A) and acknowledges support from the Internal Scientist Funding Model (ISFM) Directed Work Package at NASA Ames titled: “Laboratory Astrophysics—The NASA Ames PAH IR Spectroscopic Database.”
- Published
- 2022
13. Statistical vibrational autodetachment and radiative cooling rates of para-benzoquinone
- Author
-
Mark H Stockett, James N Bull, Henning T Schmidt, and Henning Zettergren
- Subjects
General Physics and Astronomy ,Physical and Theoretical Chemistry - Abstract
We report measurements of the statistical vibrational autodetachment (VAD, also called thermionic emission) and radiative cooling rates of isolated para-benzoquinone (pBQ, C6H4O2) radical anions using the cryogenic electrostatic ion storage ring facility DESIREE. The results are interpreted using master equation simulations with rate coefficients calculated using statistical detailed balance theory. The VAD rate is determined by measuring the time-dependent yield of neutral pBQ due to spontaneous electron emission from a highly-excited ensemble of anions formed in an electron-attachment ion source. Competition with radiative cooling quenches the VAD rate after a critical time of τc = 11.00(5) ms. Master equation simulations which reproduce the VAD yield provide an estimate of the initial effective vibrational temperature of the ions of 1100(20) K, and provide insight into the anion formation scenario. A second measurement of the radiative cooling rate of pBQ− stored for up to 0.5 s was achieved using time-dependent photodetachment action spectroscopy across the 2Au ← 2B2g and 2B2u ← 2B2g transitions. The rate at which hot-band contributions fade from the action spectrum is quantified by non-negative matrix factorisation. This is found to be commensurate with the average vibrational energy extracted from the simulations, with 1/e lifetimes of 0.16(3) s and 0.1602(7) s, respectively. Implications for astrochemistry are discussed.
- Published
- 2022
14. Experimental radiative cooling rates of a Polycyclic Aromatic Hydrocarbon cation
- Author
-
José Eduardo Navarro Navarrete, James N Bull, Henrik Cederquist, Suvasthika Indrajith, Mingchao Ji, Henning Schmidt, Henning Zettergren, Boxing Zhu, and Mark H Stockett
- Subjects
Physical and Theoretical Chemistry - Abstract
Several small Polycyclic Aromatic Hydrocarbons (PAHs) have been identified recently in the Taurus Molecular Cloud (TMC-1) using radio telescope observations. Reproducing the observed abundances of these molecules has been a challenge for astrochemical models. Rapid radiative cooling of PAHs by Recurrent Fluorescence (RF), the emission of optical photons from thermally populated electronically excited states, has been shown to efficiently stabilize small PAHs following ionization, augmenting their resilience in astronomical environments and helping to rationalize their observed high abundances. Here, we use a novel method to experimentally determine the radiative cooling rate of the cation of 1-cyanonaphthalene (C 10H 7CN, 1-CNN), the neutral species of which has been identified in TMC-1. Laser-induced dissociation rates and kinetic energy release distributions of 1-CNN cations isolated in a cryogenic electrostatic ion-beam storage ring are analysed to track the time evolution of the vibrational energy distribution of the initially hot ion ensemble as it cools. The measured cooling rate is in good agreement with the previously calculated RF rate coefficient. Improved measurements and models of the RF mechanism are needed to interpret astronomical observations and refine predictions of the stabilities of interstellar PAHs.
- Published
- 2023
15. Erratum: State-Resolved Mutual Neutralization of Mg+ and D− [Phys. Rev. Lett. 128 , 033401 (2022)]
- Author
-
Jon Grumer, Gustav Eklund, Anish M. Amarsi, Paul S. Barklem, Stefan Rosén, MingChao Ji, Ansgar Simonsson, Henrik Cederquist, Henning Zettergren, and Henning T. Schmidt
- Subjects
General Physics and Astronomy - Published
- 2023
16. Photofragmentation specificity of photoionized cyclic amino acids (diketopiperazines) as precursors of peptide building blocks
- Author
-
Darío Barreiro-Lage, Jacopo Chiarinelli, Paola Bolognesi, Robert Richter, Henning Zettergren, Mark H. Stockett, Sergio Díaz-Tendero, and Lorenzo Avaldi
- Subjects
General Physics and Astronomy ,Physical and Theoretical Chemistry - Abstract
The photoionisation and photofragmentation of the two cyclic dipetides cyclo(alanyl-glycine) cGA and cyclo(glycyl-glycine) cGG, have been studied combining experiments and simulations.
- Published
- 2023
17. Survival of polycyclic aromatic hydrocarbon knockout fragments in the interstellar medium
- Author
-
Henning T. Schmidt, Henning Zettergren, Ansgar Simonsson, MingChao Ji, Mark H. Stockett, Stephan Denifl, Michael Gatchell, Henrik Cederquist, and João Ameixa
- Subjects
Knockout ,Chemical physics ,Astrophysics::High Energy Astrophysical Phenomena ,Science ,General Physics and Astronomy ,Polycyclic aromatic hydrocarbon ,General Biochemistry, Genetics and Molecular Biology ,Dissociation (chemistry) ,Article ,Ion ,chemistry.chemical_compound ,Molecule ,Astrophysics::Galaxy Astrophysics ,Interstellar Medium ,chemistry.chemical_classification ,Thermal equilibrium ,Laboratory astrophysics ,Multidisciplinary ,General Chemistry ,PAH ,Storage Ring ,Coronene ,Interstellar medium ,Supernova ,chemistry ,Atomic and molecular collision processes - Abstract
Laboratory studies play a crucial role in understanding the chemical nature of the interstellar medium (ISM), but the disconnect between experimental timescales and the timescales of reactions in space can make a direct comparison between observations, laboratory, and model results difficult. Here we study the survival of reactive fragments of the polycyclic aromatic hydrocarbon (PAH) coronene, where individual C atoms have been knocked out of the molecules in hard collisions with He atoms at stellar wind and supernova shockwave velocities. Ionic fragments are stored in the DESIREE cryogenic ion-beam storage ring where we investigate their decay for up to one second. After 10 ms the initially hot stored ions have cooled enough so that spontaneous dissociation no longer takes place at a measurable rate; a majority of the fragments remain intact and will continue to do so indefinitely in isolation. Our findings show that defective PAHs formed in energetic collisions with heavy particles may survive at thermal equilibrium in the interstellar medium indefinitely, and could play an important role in the chemistry in there, due to their increased reactivity compared to intact or photo-fragmented PAHs., Ion storage rings allow reactions to be studied over orders of magnitude in time, bridging the gap between typical experimental and astronomical timescales. Here the authors observe that polycyclic aromatic hydrocarbon fragments produced upon collision with He atoms at velocities typical of stellar winds and supernova shockwaves remain intact up to second timescales, thus may play an important role in interstellar chemistry.
- Published
- 2021
18. Radiative cooling of polyyne anions: C
- Author
-
Boxing, Zhu, James N, Bull, José E, Navarro Navarrete, Alice F, Schmidt-May, Henrik, Cederquist, Henning T, Schmidt, Henning, Zettergren, and Mark H, Stockett
- Abstract
Time-dependent photodetachment action spectra for the linear hydrocarbon anions C
- Published
- 2022
19. Clusters of Fullerenes: Structures and Dynamics
- Author
-
Klavs Hansen and Henning Zettergren
- Subjects
Physical and Theoretical Chemistry - Abstract
The geometric structures and reaction dynamics of clusters of carbon fullerene molecules are reviewed. The topics on structure cover the elementary building blocks, the interatomic and intermolecular potentials, and the geometric structures of the aggregates. The dynamics part describes the time development after excitation with laser light, in bimolecular collisions, and in collisions with high energy atomic ions. These reactions produce singly or multiply charged clusters, fragmented or intact fullerene monomers, and fusion products. The duration of the interaction time and the transferred energy are found to play determining roles for the nature of the products. Short interaction times and high energy excitation favor intramolecular reactions on excited potential energy surfaces, producing fused products, often with a strong release of the combined excess energy and heat of fusion. Clusters excited at low energies tend to disintegrate into intact fullerene molecules.
- Published
- 2022
20. Spontaneous and photo-induced decay processes of WF
- Author
-
Hubert, Gnaser, Martin, Martschini, David, Leimbach, Julia, Karls, Dag, Hanstorp, Suvasthika, Indrajith, Mingchao, Ji, Paul, Martini, Ansgar, Simonsson, Henning, Zettergren, Henning T, Schmidt, and Robin, Golser
- Abstract
Spontaneous and photo-induced decay processes of HfF
- Published
- 2022
21. Radiative cooling rates of substituted PAH ions
- Author
-
Boxing Zhu, James N. Bull, MingChao Ji, Henning Zettergren, and Mark H. Stockett
- Subjects
General Physics and Astronomy ,Physical and Theoretical Chemistry - Abstract
The unimolecular dissociation and infrared radiative cooling rates of cationic 1-hydroxypyrene (OHPyr+, C16H10O+) and 1-bromopyrene (BrPyr+, C16H9Br+) are measured using a cryogenic electrostatic ion beam storage ring. A novel numerical approach is developed to analyze the time dependence of the dissociation rate and to determine the absolute scaling of the radiative cooling rate coefficient. The model results show that radiative cooling competes with dissociation below the critical total vibrational energies E c = 5.39(1) eV for OHPyr+ and 5.90(1) eV for BrPyr+. These critical energies and implications for radiative cooling dynamics are important for astrochemical models concerned with energy dissipation and molecular lifecycles. The methods presented extend the utility of storage ring experiments on astrophysically relevant ions.
- Published
- 2022
22. Final-state-resolved mutual neutralization in I+ - I− collisions
- Author
-
Mathias Poline, Xiang Yuan, Sylvain Badin, MingChao Ji, Stefan Rosén, Suvasthika Indrajith, Richard D. Thomas, Henning T. Schmidt, Henning Zettergren, Andre Severo Pereira Gomes, and Nicolas Sisourat
- Published
- 2022
23. Mutual neutralisation of O+ with O−: investigation of the role of metastable ions in a combined experimental and theoretical study
- Author
-
Mats Larsson, Jon Grumer, Paul S. Barklem, Gustav Eklund, Henning Zettergren, Henrik Cederquist, Shaun G. Ard, Stefan Rosén, MingChao Ji, Nicholas S. Shuman, Xavier Urbain, Henning T. Schmidt, Mathias Poline, Albert A. Viggiano, Ansgar Simonsson, Peter Reinhed, Arnaud Dochain, Richard D. Thomas, and Mikael Blom
- Subjects
Materials science ,Atom and Molecular Physics and Optics ,Metastability ,General Physics and Astronomy ,Atom- och molekylfysik och optik ,Physical and Theoretical Chemistry ,Atomic physics ,Branching (polymer chemistry) ,Storage ring ,Ion - Abstract
The mutual neutralisation of O+ with O- has been studied in a double ion-beam storage ring with combined merged-beams, imaging and timing techniques. Branching ratios were measured at the collision energies of 55, 75 and 170 (+/- 15) meV, and found to be in good agreement with previous single-pass merged-beams experimental results at 7 meV collision energy. Several previously unidentified spectral features were found to correspond to mutual neutralisation channels of the first metastable state of the cation (O+(D-2(o)), tau approximate to 3.6 hours), while no contributions from the second metastable state (O+(P-2(o)), tau approximate to 5 seconds) were observed. Theoretical calculations were performed using the multi-channel Landau-Zener model combined with the anion centered asymptotic method, and gave good agreement with several experimentally observed channels, but could not describe well observed contributions from the O+(D-2(o)) metastable state as well as channels involving the O(3s S-5(o)) state.
- Published
- 2021
24. State-Resolved Mutual Neutralization of Mg+ and D
- Author
-
Jon Grumer, Gustav Eklund, Anish M. Amarsi, Paul S. Barklem, Stefan Rosén, MingChao Ji, Ansgar Simonsson, Henrik Cederquist, Henning Zettergren, and Henning T. Schmidt
- Subjects
Astronomi, astrofysik och kosmologi ,Atom and Molecular Physics and Optics ,General Physics and Astronomy ,Astronomy, Astrophysics and Cosmology ,Atom- och molekylfysik och optik - Abstract
We present experimental final-state distributions for Mg atoms formed in Mg+ + D- mutual neutralization reactions at center-of-mass collision energies of 59 +/- 12 meV by using the merged-beams method. Comparisons with available full-quantum results reveal large discrepancies and a previously underestimated total rate coefficient by up to a factor of 2 in the 0-1 eV (< 10(4) K) regime. Asymptotic model calculations arc shown to describe the process much better and we recommend applying this method to more complex iron group systems; data that is of urgent need in stellar spectral modeling.
- Published
- 2022
25. Mutual neutralisation of O
- Author
-
Mathias, Poline, Arnaud, Dochain, Stefan, Rosén, Jon, Grumer, MingChao, Ji, Gustav, Eklund, Ansgar, Simonsson, Peter, Reinhed, Mikael, Blom, Nicholas S, Shuman, Shaun G, Ard, Albert A, Viggiano, Mats, Larsson, Henrik, Cederquist, Henning T, Schmidt, Henning, Zettergren, Xavier, Urbain, Paul S, Barklem, and Richard D, Thomas
- Abstract
The mutual neutralisation of O
- Published
- 2021
26. Clusters of Fullerenes
- Author
-
Henning Zettergren and Klavs Hansen
- Subjects
chemistry.chemical_compound ,Range (particle radiation) ,Fusion ,Monomer ,Materials science ,Fullerene ,chemistry ,Chemical physics ,Physics::Atomic and Molecular Clusters ,Cluster (physics) ,Molecule ,Excitation ,Ion - Abstract
The structure and dynamics of clusters of the all-carbon fullerene molecules are reviewed. After a brief overview of the properties of the individual fullerene molecules, the experimentally determined structures and the theoretical interaction potentials describing the cluster properties are reviewed. The dynamics of fullerene–fullerene molecule interaction after exposure of clusters to laser excitation, in bi-molecular collisions and after exposure of clusters to high energy ion beams is then reviewed. These show that the end products may be (multiply) charged clusters, fragmented or intact fullerene monomers or a wide range of fusion products, depending on how the excitation energy is transferred to the clusters and the amount of it.
- Published
- 2021
27. Final-state-resolved mutual neutralization of Na+ and D−
- Author
-
Jon Grumer, Paul S. Barklem, Gustav Eklund, Henning T. Schmidt, Stefan Rosén, MingChao Ji, Henrik Cederquist, Henning Zettergren, Ansgar Simonsson, and Richard D. Thomas
- Subjects
Physics ,education.field_of_study ,Monte Carlo method ,Population ,State (functional analysis) ,01 natural sciences ,010305 fluids & plasmas ,Linear combination of atomic orbitals ,Quantum state ,0103 physical sciences ,Atom ,Atomic physics ,010306 general physics ,Ground state ,education ,Energy (signal processing) - Abstract
The present paper reports on a merged-beam experiment on mutual neutralization between ${\mathrm{Na}}^{+}$ and ${\mathrm{D}}^{\ensuremath{-}}$. For this experiment, we have used the DESIREE ion-beams storage-ring facility. The reaction products are detected using a position- and time-sensitive detector, which ideally allows for determination of the population of each individual quantum state in the final atomic systems. Here, the $4s, 3d$, and $4p$ final states in Na are observed and in all cases the D atom is in its ground state $1s ^{2}S$. The respective branching fractions of the states populated in Na are determined by fitting results from a Monte Carlo simulation of the experiment to the measured data. The center-of-mass collision energy is controlled using a set of biased drift tubes, and the branching fractions are measured for energies between 80 meV and 393 meV. The resulting branching fractions are found to agree qualitatively with the only available theoretical calculations for this particular system, which are based on a multichannel Landau-Zener approach using dynamic couplings determined with a linear combination of atomic orbitals model.
- Published
- 2021
28. Competitive Dehydrogenation and Backbone Fragmentation of Superhydrogenated PAHs: A Laboratory Study
- Author
-
Mark H. Stockett, James N. Bull, Robert Richter, Paola Bolognesi, Henning Zettergren, Laura Carlini, Jacopo Chiarinelli, Lorenzo Avaldi, and Eduardo Carrascosa
- Subjects
Astrochemistry ,Hydrogen ,spectra ,chemistry.chemical_element ,dissociation ,Medicinal chemistry ,Ion ,Catalysis ,chemistry.chemical_compound ,Fragmentation (mass spectrometry) ,emission ,ultraviolet ,Dehydrogenation ,Physics ,polycyclic aromatic-hydrocarbons ,synchrotron radiation ,anthracene ,molecular-hydrogen formation ,Astronomy and Astrophysics ,dynamics ,PAH ,mass-spectrometry ,cations ,PEPICO ,chemistry ,Space and Planetary Science ,Pyrene ,Carbon - Abstract
Superhydrogenated polycyclic aromatic hydrocarbons (PAHs) have been suggested to catalyze the formation of H2 in certain regions of space, but it remains unclear under which circumstances this mechanism is viable given the reduced carbon backbone stability of superhydrogenated PAHs. We report a laboratory study on the stability of the smallest pericondensed PAH, pyrene (C16H10+N , with N = 4, 6, and 16 additional H atoms), against photodestruction by single vacuum ultraviolet photons using the photoelectron–photoion coincidence technique. For N = 4, we observe a protective effect of hydrogenation against the loss of native hydrogens, in the form of an increase in the appearance energies of the and C16H8 + daughter ions compared to those reported for pristine pyrene (C16H10). No such effect is seen for N = 6 or 16, where the weakening effect of replacing aromatic bonds with aliphatic ones outweighs the buffering effect of the additional hydrogen atoms. The onset of fragmentation occurs at similar internal energies for N = 4 and 6, but is significantly lower for N = 16. In all three cases, H-loss and C m H n -loss (m ≥ 1, carbon backbone fragmentation) channels open at approximately the same energy. The branching fractions of the primary channels favor H-loss for N = 4, C m H n -loss for N = 16, and are roughly equal for the intermediate N = 6. We conclude that superhydrogenated pyrene is probably too small to support catalytic H2-formation, while trends in the current and previously reported data suggest that larger PAHs may serve as catalysts up to a certain level of hydrogenation.
- Published
- 2021
- Full Text
- View/download PDF
29. Roadmap on dynamics of molecules and clusters in the gas phase
- Author
-
Claire Romanzin, Alicja Domaracka, S. D. Tošić, Michael Gatchell, Jaroslav Kočišek, Simon Albertini, Mattea Carmen Castrovilli, Steen Brøndsted Nielsen, Ewa Erdmann, Janina Kopyra, Sylvain Maclot, Daniela Ascenzi, Amanda L. Steber, Klavs Hansen, Marta Łabuda, Christophe Jouvet, Lars H. Andersen, Dariusz G. Piekarski, Manuel Alcamí, Alicia Palacios, Sergio Díaz-Tendero, Henrik Cederquist, Elisabeth Gruber, Lorenzo Avaldi, Paola Bolognesi, Per Johnsson, Yoni Toker, Shirin Faraji, Oded Heber, Annemieke Petrignani, Christina Kjær, A. Candian, Aleksandar R. Milosavljević, Jennifer A. Noble, Paulo Limão-Vieira, Patrick Rousseau, Henning T. Schmidt, Eduardo Carrascosa, Juraj Fedor, Denis S. Tikhonov, Thomas Schlathölter, James N. Bull, Sadia Bari, Henning Zettergren, Department of Physics [Stockholm], Stockholm University, Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Zernike Institute for Advanced Materials, University of Groningen [Groningen], Istituto di Struttura della Materia (CNR-ISM), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid (Spain), Department of Theoretical Physics and Quantum Information (DTPQI), Gdansk University of technology, Institute of Physics [Belgrade], University of Belgrade [Belgrade], Department of Physics (Göthenburg), University of Gothenburg (GU), Department of Physics, Mathematical Physics [Lund], Lund University [Lund], Deutsches Elektronen-Synchrotron [Hamburg] (DESY), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, Universidad Autónoma de Madrid (UAM), Institute of Physical Chemistry [Warsaw], Polish Academy of Sciences, Department III, Normandie Université (NU), Department of Physics (DPUT), University of Trento [Trento], Institut de Chimie Physique (ICP), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Siedlce University of Natural Sciences and Humanities, Centro de Física e Investigação Tecnológica [Lisboa] (CEFITEC), Departamento de Fìsica [Lisboa] (DF), Faculdade de Ciências e Tecnologia = School of Science & Technology (FCT NOVA), Universidade Nova de Lisboa = NOVA University Lisbon (NOVA)-Universidade Nova de Lisboa = NOVA University Lisbon (NOVA)-Faculdade de Ciências e Tecnologia = School of Science & Technology (FCT NOVA), Universidade Nova de Lisboa = NOVA University Lisbon (NOVA)-Universidade Nova de Lisboa = NOVA University Lisbon (NOVA), J. Heyrovský Institute of Physical Chemistry of the ASCR, Czech Academy of Sciences [Prague] (CAS), Institut für Ionenphysik und Angewandte Physik - Institute for Ion Physics and Applied Physics [Innsbruck], Leopold Franzens Universität Innsbruck - University of Innsbruck, Department of Physics and Astronomy [Aarhus], Aarhus University [Aarhus], Department of Particle Physics, Weizmann Institute of Science, Ajo, Bar-Ilan University [Israël], Tianjin University of Science and Technology (TUST), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique Fédérale de Lausanne (EPFL), University of East Anglia [Norwich] (UEA), van ‘t Hoff Institute for Molecular Sciences, Universiteit van Amsterdam (UvA), DF – Departamento de Física, CeFITec – Centro de Física e Investigação Tecnológica, UAM. Departamento de Química, Molecular Processes Modeling Group, Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Caen Normandie (UNICAEN), Consiglio Nazionale delle Ricerche [Roma] (CNR), Universidad Autonoma de Madrid (UAM), School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom, Van't Hoff Institute for Molecular Sciences, University of Amsterdam [Amsterdam] (UvA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Quantum interactions and structural dynamics, and Theoretical Chemistry
- Subjects
ab-initio ,Astrochemistry ,cold ion spectroscopy ,COLD ION SPECTROSCOPY ,storage-ring ,Clusters in the Gas Phase ,Nanotechnology ,02 engineering and technology ,Physics, Atomic, Molecular & Chemical ,010402 general chemistry ,01 natural sciences ,Gas phase ,POLYCYCLIC AROMATIC-HYDROCARBONS ,resolved photoelectron-spectroscopy ,fragmentation dynamics ,Molecule ,ddc:530 ,STORAGE-RING ,THERMIONIC EMISSION ,AB-INITIO ,Physics ,polycyclic aromatic-hydrocarbons ,Science & Technology ,low-energy electrons ,LOW-ENERGY ELECTRONS ,FRAGMENTATION DYNAMICS ,RESOLVED PHOTOELECTRON-SPECTROSCOPY ,[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus] ,Optics ,SUPERFLUID-HELIUM DROPLETS ,MASS-SPECTROMETRY ,Química ,mass-spectrometry ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Dynamics of Molecules ,superfluid-helium droplets ,Physical Sciences ,thermionic emission ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,0210 nano-technology - Abstract
The European physical journal / D 75(5), 152 (2021). doi:10.1140/epjd/s10053-021-00155-y, This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science., Published by Springer, Heidelberg
- Published
- 2021
30. Experimental and theoretical studies of excited states in Ir
- Author
-
M. K. Kristiansson, Jon Grumer, J. Karls, Dag Hanstorp, Henning Zettergren, Henning T. Schmidt, Gustav Eklund, V. Ideböhn, N. D. Gibson, Tomas Brage, Sacha Schiffmann, and N. de Ruette
- Subjects
Physics ,Excited state ,Atom and Molecular Physics and Optics ,Binding energy ,Bound state ,Relaxation (NMR) ,Ionic bonding ,Order (ring theory) ,Généralités ,Atom- och molekylfysik och optik ,Ideal (ring theory) ,Atomic physics ,Ion - Abstract
The properties of atomic negative ions are to a large extent determined by electron-electron correlation which makes them an ideal testing ground for atomic many-body physics. In this paper, we present a detailed experimental and theoretical study of excited states in the negative ion of iridium. The ions were stored at cryogenic temperatures using the double electrostatic ion ring experiment facility at Stockholm University. Laser photodetachment was used to monitor the relaxation of three bound excited states belonging to the [Xe] 4f145d86s2 ionic ground configuration. Our measurements show that the first excited state has a lifetime much longer than the ion-beam storage time of 1230±100s. The binding energy of this state was measured to be 1.045±0.002eV. The lifetimes of the second and third excited states were experimentally determined to be 133±10 and 172±35ms, respectively. Multiconfiguration Dirac-Hartree-Fock calculations were performed in order to extract binding energies and lifetimes. These calculations predict the existence of the third excited bound state that was detected experimentally. The computed lifetimes for the three excited bound states agree well with the experimental results and allow for a clear identification of the detected levels., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2021
31. Smart decomposition of cyclic alanine-alanine dipeptide by VUV radiation: a seed for the synthesis of biologically relevant species
- Author
-
Darío Barreiro-Lage, Paola Bolognesi, Henning Zettergren, Sergio Díaz-Tendero, Jacopo Chiarinelli, Mark H. Stockett, Laura Carlini, Lorenzo Avaldi, Robert Richter, and UAM. Departamento de Química
- Subjects
molecular dynamics symulations ,Ultraviolet Rays ,Peptide ,Diketopiperazines ,Molecular Dynamics Simulation ,Molecular dynamics ,DFT calculations ,Peptides, Cyclic ,Polymerization ,chemistry.chemical_compound ,Cyclo(AlaAla) ,General Materials Science ,Physical and Theoretical Chemistry ,Oxazolidinones ,chemistry.chemical_classification ,Alanine ,Dipeptide ,Photolysis ,astrochemistry ,Biological activity ,Química ,Combinatorial chemistry ,Decomposition ,Molecular decomposition ,Amino acid ,chemistry ,Amino acids ,cyclodipeptides ,Peptides - Abstract
A combined experimental and theoretical study shows how the interaction of VUV radiation with cyclo-(alanine-alanine), one of the 2,5-diketopiperazines (DKPs), produces reactive oxazolidinone intermediates. The theoretical simulations reveal that the interaction of these intermediates with other neutral and charged fragments, released in the molecular decomposition, leads either to the reconstruction of the cyclic dipeptide or to the formation of longer linear peptide chains. These results may explain how DKPs could have, on one hand, survived hostile chemical environments and, on the other, provided the seed for amino acid polymerization. Shedding light on the mechanisms of production of such prebiotic building blocks is of paramount importance to understanding the abiotic synthesis of relevant biologically active compounds, This article is based upon work from COST action CA18212 - Molecular Dynamics in the GAS phase (MD-GAS), supported by COST (European Cooperation in Science and Technology). The authors acknowledge the generous allocation of computer time at the Centro de Computación Cientıfí ca at the Universidad Autonoma de Madrid (CCC-UAM). This work ́ was partially supported by MICINN (Spanish Ministry of Science and Innovation) project PID2019-110091GB-I00, the “Marıa de Maeztu ́ ” (CEX2018-000805-M) Program for Centers of Excellence in R&D, MAECI Italy-Sweden project “Novel molecular tools for the exploration of the nanoworld”, and PRIN 20173B72NB project “Predicting and controlling the fate of biomolecules driven by extreme-ultraviolet radiation”. D.B.-L. acknowledges the FPI grant associated with MICINN project CTQ2016-76061-P. H.Z. acknowledges the Swedish Research Council for the individual project grant with contract no. 2020- 03437
- Published
- 2021
32. Unimolecular fragmentation and radiative cooling of isolated PAH ions: A quantitative study
- Author
-
Henning T. Schmidt, Naoko Kono, Jack T. Buntine, Eduardo Carrascosa, Mark H. Stockett, MingChao Ji, James N. Bull, and Henning Zettergren
- Subjects
Materials science ,Absorption spectroscopy ,Radiative cooling ,Oscillator strength ,ne ,mechanism ,General Physics and Astronomy ,010402 general chemistry ,01 natural sciences ,Molecular physics ,Molecular electronic transition ,Ion ,chemistry.chemical_compound ,Fragmentation (mass spectrometry) ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Physical and Theoretical Chemistry ,010304 chemical physics ,Absorption cross section ,excitation ,energies ,0104 chemical sciences ,chemistry ,radical cations ,fluorescence ,electronic-absorption-spectra ,Perylene - Abstract
Time-resolved spontaneous and laser-induced unimolecular fragmentation of perylene cations (C20H12+) has been measured on timescales up to 2 s in a cryogenic electrostatic ion beam storage ring. We elaborate a quantitative model, which includes fragmentation in competition with radiative cooling via both vibrational and electronic (recurrent fluorescence) de-excitation. Excellent agreement with experimental results is found when sequential fragmentation of daughter ions co-stored with the parent perylene ions is included in the model. Based on the comparison of the model to experiment, we constrain the oscillator strength of the D-1 -> D-0 emissive electronic transition in perylene (f(RF) = 0.055 +/- 0.011), as well as the absolute absorption cross section of the D-5 670 Mb). The former transition is responsible for the laser-induced and recurrent fluorescence of perylene, and the latter is the most prominent in the absorption spectrum. The vibrational cooling rate is found to be consistent with the simple harmonic cascade approximation. Quantitative experimental benchmarks of unimolecular processes in polycyclic aromatic hydrocarbon ions like perylene are important for refining astrochemical models.
- Published
- 2020
33. Spontaneous decay of small carbon cluster dianions Cn2− (n=7-11)
- Author
-
H. Gnaser, K. C. Chartkunchand, Henning Zettergren, H. T. Schmidt, H. Cederquist, P. K. Najeeb, G. Eklund, M. K. Kristiansson, Dag Hanstorp, R. Golser, E. K. Anderson, Stefan Rosén, and Mark H. Stockett
- Subjects
Spontaneous decay ,History ,Crystallography ,Materials science ,chemistry ,Cluster (physics) ,chemistry.chemical_element ,General Physics and Astronomy ,Carbon ,Computer Science Applications ,Education - Abstract
Synopsis We have studied the stabilities of small carbon dianion clusters, C n 2 − (n = 7 – 11) in the cryogenic electrostatic ion storage ring, DESIREE. We observe spontaneous electron emission for tens of milliseconds, where dianions containing an even number of carbons decay slower in comparison to their neighbouring cluster sizes. For all the systems considered here, we find that there is a component which is stable at least on the time scales of hundreds of milliseconds.
- Published
- 2020
34. On the mechanisms of formation and decomposition of peptide bonds
- Author
-
Patrick Rousseau, Gustav Eklund, Mark H. Stockett, Paola Bolognesi, Henning Zettergren, Lorenzo Avaldi, Hanan Sa'adeh, C. Nicolafrancesco, S Indrajith, Jacopo Chiarinelli, Alicja Domaracka, Robert Richter, Istituto di Struttura della Materia (CNR-ISM), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Stockholm], and Stockholm University
- Subjects
[PHYS]Physics [physics] ,History ,animal structures ,integumentary system ,Computational chemistry ,Chemistry ,embryonic structures ,Peptide bond ,lipids (amino acids, peptides, and proteins) ,Decomposition ,Computer Science Applications ,Education - Abstract
Synopsis The electronic structure and the fragmentation dynamics of a series of isolated cyclic-dipeptides (cyclo-Ala-Ala; cyclo-Gly-Ala; cyclo-Gly-Gly) have been studied by mass spectrometry, photoemission and photoelectron-photoion coincidence spectroscopy.
- Published
- 2020
35. Cryogenic merged-ion-beam experiments in DESIREE : Final-state-resolved mutual neutralization of Li+ and D
- Author
-
Stefan Rosén, Mikael Blom, Najeeb Punnakayathil, Peter Reinhed, Richard D. Thomas, Mark H. Stockett, MingChao Ji, Henning Zettergren, Mikael Björkhage, Henning T. Schmidt, P. Löfgren, Anders Källberg, Ansgar Simonsson, Jon Grumer, Paul S. Barklem, Gustav Eklund, and Henrik Cederquist
- Subjects
Condensed Matter::Quantum Gases ,Physics ,Ion beam ,Atom and Molecular Physics and Optics ,State (functional analysis) ,01 natural sciences ,Neutralization ,010305 fluids & plasmas ,Ion ,0103 physical sciences ,Molecule ,Atom- och molekylfysik och optik ,Physics::Atomic Physics ,Atomic physics ,010306 general physics - Abstract
We have developed an experimental technique to study charge-and energy-flow processes in sub-eV collisions between oppositely charged, internally cold, ions of atoms, molecules, and clusters. Two ion beams are stored in separate rings of the cryogenic ion-beam storage facility DESIREE, and merged in a common straight section where a set of biased drift tubes is used to control the center-of-mass collision energy locally in fine steps. Here, we present measurements on mutual neutralization between Li+ and D- where a time-sensitive imaging-detector system is used to measure the three-dimensional distance between the neutral Li and D atoms as they reach the detector. This scheme allows for direct measurements of kinetic-energy releases, and here it reveals separate populations of the 3s state and the (3p + 3d) states in neutral Li while the D atom is left in its ground state 1s. The branching fraction of the 3s final state is measured to be 57.8 +/- 0.7% at a center-of-mass collision energy of 78 +/- 13 meV. The technique paves the way for studies of charge-, energy-, and mass-transfer reactions in single collisions involving molecular and cluster ions in well-defined quantum states.
- Published
- 2020
36. Radiative cooling dynamics of anthracene cations stored in DESIREE studied via the time evolution of 2-photon-absorption induced dissociation rate
- Author
-
C. Joblin, Henning Zettergren, M Stockett, Henning T. Schmidt, G Wenzel, Jérôme Bernard, M. Ji, Abdulaziz Al-Mogeeth, Serge Martin, Institut Lumière Matière [Villeurbanne] (ILM), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Stockholm], Stockholm University, Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France, Centre Etud Spatiale Rayonnements Toulouse, Spectrométrie des biomolécules et agrégats (SPECTROBIO), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,History ,Anthracene ,Materials science ,Photon ,010304 chemical physics ,Internal energy ,Radiative cooling ,Infrared ,Time evolution ,01 natural sciences ,7. Clean energy ,Molecular physics ,Dissociation (chemistry) ,Computer Science Applications ,Education ,[SPI]Engineering Sciences [physics] ,chemistry.chemical_compound ,chemistry ,13. Climate action ,0103 physical sciences ,[CHIM]Chemical Sciences ,010306 general physics ,Storage ring ,ComputingMilieux_MISCELLANEOUS - Abstract
Synopsis Anthracene cations (C14H10 +) have been stored in the cryogenic (13 K) electrostatic storage ring DESIREE in Stockholm to study their radiative cooling dynamics on a long time scale up to 2 s. By monitoring the laser-induced delayed dissociation curves during the storage, the evolution of the dissociation rate was obtained. Its decrease as a function of time is closely related to the time evolution of the internal energy distribution of the stored anthracene cations and consequently to the energy loss due to radiative cooling, including both Poincaré and infrared fluorescences.
- Published
- 2020
37. Negative ion relaxation and reactions in a cryogenic storage ring
- Author
-
Mark H. Stockett, Michael Gatchell, Anders Källberg, P. K. Najeeb, Jon Grumer, Åsa Larson, Wolf D. Geppert, Klavs Hansen, Henning Zettergren, Paul S. Barklem, Mikael Björkhage, Stefan Rosén, O M Hole, Gustav Eklund, MingChao Ji, P. Löfgren, Peter Reinhed, Henning T. Schmidt, Henrik Hartman, Richard D. Thomas, M. K. Kristiansson, John D. Alexander, Henrik Cederquist, N Kono, Dag Hanstorp, Mikael Blom, E. K. Anderson, and Ansgar Simonsson
- Subjects
History ,Materials science ,Atom and Molecular Physics and Optics ,Electron ,Diatomic molecule ,Computer Science Applications ,Education ,Ion ,Metal ,Fragmentation (mass spectrometry) ,visual_art ,Metastability ,visual_art.visual_art_medium ,Physics::Atomic and Molecular Clusters ,Atom- och molekylfysik och optik ,Physics::Atomic Physics ,Atomic physics ,Physics::Chemical Physics ,Selectivity ,Storage ring - Abstract
An overview of recent experimental results of studies of negative atomic and molecular ions in the Double ElectroStatic Ion-Ring ExpEriment, DESIREE is given. Metastable level lifetimes in atomic negative ions have been measured by time-dependent laser photodetachment. Rotational relaxation of diatomic anions is studied by near-threshold photodetachment. Spontaneous decays of small metal cluster anions by electron emission and fragmentation is studied with decay-channel specificity. Finally, mutual neutralisation of pairs of negative and positive ions has been investigated with initial and final state selectivity.
- Published
- 2020
38. The threshold displacement energy of buckminsterfullerene C60 and formation of the endohedral defect fullerene He@C59
- Author
-
Mark H. Stockett, Henning Zettergren, Henrik Cederquist, Michael Wolf, Michael Gatchell, and Henning T. Schmidt
- Subjects
Materials science ,Fullerene ,FOS: Physical sciences ,chemistry.chemical_element ,02 engineering and technology ,Kinetic energy ,01 natural sciences ,Molecular physics ,Molecular dynamics ,chemistry.chemical_compound ,Buckminsterfullerene ,Physics - Chemical Physics ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,General Materials Science ,010306 general physics ,Chemical Physics (physics.chem-ph) ,Carbon atom ,General Chemistry ,021001 nanoscience & nanotechnology ,Astrophysics - Astrophysics of Galaxies ,chemistry ,Astrophysics of Galaxies (astro-ph.GA) ,Threshold displacement energy ,0210 nano-technology ,Carbon - Abstract
We have measured the threshold center-of-mass kinetic energy for knocking out a single carbon atom from C 60 − in collisions with He. Combining this experimental result with classical molecular dynamics simulations, we determine a semi-empirical value of 24.1 ± 0.5 eV for the threshold displacement energy, the energy needed to remove a single carbon atom from the C60 cage. We report the first observation of an endohedral complex with an odd number of carbon atoms, He@C 59 − , and discuss its formation and decay mechanisms.
- Published
- 2018
39. Interactions of energetic ions with fullerenes, PAHs, and their weakly bound clusters
- Author
-
Henning Zettergren
- Subjects
Nuclear and High Energy Physics ,Fullerene ,Projectile ,01 natural sciences ,Ion ,chemistry.chemical_compound ,Monomer ,chemistry ,Chemical physics ,0103 physical sciences ,Coulomb ,Cluster (physics) ,Atomic physics ,010306 general physics ,010303 astronomy & astrophysics ,Instrumentation ,Astrophysics::Galaxy Astrophysics - Abstract
This brief review highlights recent advances in our understanding on how fullerenes, Polycyclic Aromatic Hydrocarbons (PAHs), and their clusters respond to singly and multiply charged keV-ion impact. These studies reveal how the projectile charge, mass, and velocity may be tuned to investigate, e.g., the stabilities of multiply charged monomers and clusters, different monomer and cluster cooling processes, molecular heating by Coulomb explosions of highly charged clusters, and impulse driven molecular growth processes.
- Published
- 2017
40. A summary of results obtained with the cryogenic electrostatic storage ring DESIREE
- Author
-
Henning Zettergren
- Subjects
Physics ,TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ,0103 physical sciences ,General Physics and Astronomy ,Atomic physics ,010306 general physics ,01 natural sciences ,Storage ring ,010305 fluids & plasmas - Abstract
This paper highlights results from recent studies of cryogenically cooled atomic and molecular anions carried out at the DESIREE storage ring facility at Stockholm University in Stockholm, Sweden. These results include measurements of lifetimes of excited metastable states in atomic anions (S−, Se−, Te−, Ni−, and Pt−), pilot studies of rotational cooling of OH−, and cooling and decay of cluster anions exemplified by results for Ag5−.
- Published
- 2017
41. Spontaneous electron emission from hot silver dimer anions: Breakdown of the Born-Oppenheimer approximation
- Author
-
Henning T. Schmidt, Stefan Rosén, Åsa Larson, Henning Zettergren, P. K. Najeeb, Klavs Hansen, Henrik Cederquist, E. K. Anderson, K. C. Chartkunchand, Gustav Eklund, and Alice F. Schmidt-May
- Subjects
Physics ,Dimer ,Avoided crossing ,Born–Oppenheimer approximation ,FOS: Physical sciences ,General Physics and Astronomy ,Electron ,01 natural sciences ,Homonuclear molecule ,Ion ,chemistry.chemical_compound ,symbols.namesake ,chemistry ,0103 physical sciences ,symbols ,Physics::Atomic and Molecular Clusters ,Physics - Atomic and Molecular Clusters ,Atomic physics ,Atomic and Molecular Clusters (physics.atm-clus) ,010306 general physics ,Adiabatic process ,Energy (signal processing) - Abstract
We report the first experimental evidence of spontaneous electron emission from a homonuclear dimer anion through direct measurements of ${\text{Ag}}_{2}^{\ensuremath{-}}\ensuremath{\rightarrow}{\text{Ag}}_{2}+{e}^{\ensuremath{-}}$ decays on milliseconds and seconds timescales. This observation is very surprising as there is no avoided crossing between adiabatic energy curves to mediate such a process. The process is weak, yet dominates the decay signal after 100 ms when ensembles of internally hot ${\mathrm{Ag}}_{2}^{\ensuremath{-}}$ ions are stored in the cryogenic ion-beam storage ring, DESIREE, for 10 s. The electron emission process is associated with an instantaneous, very large reduction of the vibrational energy of the dimer system. This represents a dramatic deviation from a Born-Oppenheimer description of dimer dynamics.
- Published
- 2019
42. Ultraslow radiative cooling of C
- Author
-
James N, Bull, Michael S, Scholz, Eduardo, Carrascosa, Moa K, Kristiansson, Gustav, Eklund, Najeeb, Punnakayathil, Nathalie, de Ruette, Henning, Zettergren, Henning T, Schmidt, Henrik, Cederquist, and Mark H, Stockett
- Abstract
Ultraslow radiative cooling lifetimes and adiabatic detachment energies for three astrochemically relevant anions, C
- Published
- 2019
43. Roadmap on photonic, electronic and atomic collision physics: III. Heavy particles: with zero to relativistic speeds
- Author
-
Toshiyuki Azuma, Richard A. Wilhelm, Marika Schleberger, Henning Schmidt, Xinwen Ma, Henning Zettergren, F. Barry Dunning, Paul Scheier, Emily Lamour, Friedrich Aumayr, Frédéric Merkt, Roberto D. Rivarola, Andrey Surzhykov, Olof Echt, Lokesh C. Tribedi, Philippe Boduch, Emma Sokell, Thomas Gallagher, Tom Kirchner, Stefan Schippers, V. M. Shabaev, Thomas Stöhlker, Hossein Sadeghpour, Omar Ariel Fojon, Stephan Fritzsche, Kiyoshi Ueda, Henrik Cederquist, José R. Crespo López-Urrutia, Yuri A. Litvinov, Groupe de Physique des Solides (GPS), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU), IMRAM, Tohoku University [Sendai], Institut für Ionenphysik und Angewandte Physik - Institute for Ion Physics and Applied Physics [Innsbruck], Leopold Franzens Universität Innsbruck - University of Innsbruck, Helmholtz zentrum für Schwerionenforschung GmbH (GSI), Agrégats et surfaces sous excitations intenses (INSP-E10), Institut des Nanosciences de Paris (INSP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Stockholm], Stockholm University, Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), University of Rostock, Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Systems Biology & Bioinformatics Group
- Subjects
Many-body interactions ,Energy transfer ,chemistry.chemical_element ,01 natural sciences ,010305 fluids & plasmas ,Nuclear physics ,Clusters ,Ionization ,0103 physical sciences ,Body dynamics ,ddc:530 ,clusters ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,complex biomolecules ,Helium ,ComputingMilieux_MISCELLANEOUS ,Physics ,[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,business.industry ,many-body interactions ,Physik (inkl. Astronomie) ,Condensed Matter Physics ,Collision ,Heavy particles ,Atomic and Molecular Physics, and Optics ,chemistry ,Complex biomolecules ,heavy particles ,Photonics ,business ,Relativistic speed ,Storage ring - Abstract
We publish three Roadmaps on photonic, electronic and atomic collision physics in order to celebrate the 60th anniversary of the ICPEAC conference. Roadmap III focusses on heavy particles: with zero to relativistic speeds. Modern theoretical and experimental approaches provide detailed insight into the wide range of many-body interactions involving projectiles and targets of varying complexity ranging from simple atoms, through molecules and clusters, complex biomolecules and nanoparticles to surfaces and crystals. These developments have been driven by technological progress and future developments will expand the horizon of the systems that can be studied. This Roadmap aims at looking back along the road, explaining the evolution of the field, and looking forward, collecting nineteen contributions from leading scientists in the field., Journal of Physics B: Atomic, Molecular and Optical Physics, 52 (17), ISSN:1361-6455, ISSN:0368-3508, ISSN:0953-4075, ISSN:0022-3700
- Published
- 2019
- Full Text
- View/download PDF
44. Decay pathways for protonated and deprotonated adenine molecules
- Author
-
Henning T. Schmidt, G D'Angelo, N. de Ruette, Manuel Alcamí, L Giacomozzi, Mark H. Stockett, Sergio Díaz-Tendero, Henning Zettergren, Henrik Cederquist, and UAM. Departamento de Química
- Subjects
General Physics and Astronomy ,Protonation ,Molecular dynamics ,010402 general chemistry ,01 natural sciences ,Dissociation (chemistry) ,Deprotonation ,Fragmentation (mass spectrometry) ,Computational chemistry ,Ab initio quantum chemistry methods ,Interstellar bands ,0103 physical sciences ,Molecule ,Physical and Theoretical Chemistry ,010304 chemical physics ,Mass spectrometry ,Física ,PAH ,Química ,Molecules ,Polycyclic aromatic hydrocarbons ,0104 chemical sciences ,Mass spectrum ,Macromolecule - Abstract
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics 151.4 (2019): 044306 and may be found at https://aip.scitation.org/doi/abs/10.1063/1.5109963, We have measured fragment mass spectra and total destruction cross sections for protonated and deprotonated adenine following collisions with He at center-of-mass energies in the 20-240 eV range. Classical and ab initio molecular dynamics simulations are used to provide detailed information on the fragmentation pathways and suggest a range of alternative routes compared to those reported in earlier studies. These new pathways involve, for instance, losses of HNC molecules from protonated adenine and losses of NH2 or C3H2N2 from deprotonated adenine. The present results may be important to advance the understanding of how biomolecules may be formed and processed in various astrophysical environments, This work was supported by the Swedish Research Council (Constant Nos. 2017-00621, 2015-04990, 2016-04181, and 2018-04092). Furthermore, we acknowledge the European Joint on Theoretical Chemistry and Computational Modelling (INT-EJD-TCCM). We acknowledge the generous allocation of computer time at the Centro de Computacion Cientifica at the Universidad Autonoma de Madrid (CCC-UAM). This work was partially supported by Project No. CTQ2016-76061-P of the Spanish Ministerio de Economia y Competitividad (MINECO)
- Published
- 2019
45. Mutual Neutralization in Li++H−/D− and Na++H−/D− Collisions: Implications of Experimental Results for Non-LTE Modeling of Stellar Spectra
- Author
-
Anish M. Amarsi, Henning T. Schmidt, Henrik Cederquist, Jon Grumer, Paul S. Barklem, Stefan Rosén, Gustav Eklund, MingChao Ji, and Henning Zettergren
- Subjects
Physics ,Atomic Physics (physics.atom-ph) ,Stellar atmosphere ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astronomical spectroscopy ,Neutralization ,Physics - Atomic Physics ,Ion ,Reaction rate ,Astrophysics - Solar and Stellar Astrophysics ,Computer Science::Systems and Control ,Space and Planetary Science ,Astrophysics::Solar and Stellar Astrophysics ,Atomic physics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Advances in merged-beams instruments have allowed experimental studies of the mutual neutralisation (MN) processes in collisions of both Li$^+$ and Na$^+$ ions with D$^-$ at energies below 1 eV. These experimental results place constraints on theoretical predictions of MN processes of Li$^+$ and Na$^+$ with H$^-$, important for non-LTE modelling of Li and Na spectra in late-type stars. We compare experimental results with calculations for methods typically used to calculate MN processes, namely the full quantum (FQ) approach, and asymptotic model approaches based on the linear combination of atomic orbitals (LCAO) and semi-empirical (SE) methods for deriving couplings. It is found that FQ calculations compare best overall with the experiments, followed by the LCAO, and the SE approaches. The experimental results together with the theoretical calculations, allow us to investigate the effects on modelled spectra and derived abundances and their uncertainties arising from uncertainties in the MN rates. Numerical experiments in a large grid of 1D model atmospheres, and a smaller set of 3D models, indicate that neglect of MN can lead to abundance errors of up to 0.1 dex (26\%) for Li at low metallicity, and 0.2 dex (58\%) for Na at high metallicity, while the uncertainties in the relevant MN rates as constrained by experiments correspond to uncertainties in abundances of much less than 0.01~dex (2\%). This agreement for simple atoms gives confidence in the FQ, LCAO and SE model approaches to be able to predict MN with the accuracy required for non-LTE modelling in stellar atmospheres., Comment: Accepted by ApJ
- Published
- 2021
46. Isomer effects in fragmentation of Polycyclic Aromatic Hydrocarbons
- Author
-
L Giacomozzi, N. de Ruette, J. Y. Chesnel, U. Bērziņš, Mark H. Stockett, Lamri Adoui, Sylvain Maclot, Henning T. Schmidt, Henning Zettergren, Tao Chen, Patrick Rousseau, Henrik Cederquist, Bernd A. Huber, Michael Gatchell, Department of Physics [Stockholm], Stockholm University, Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institute of Atomic Physics and Spectroscopy [Latvia], University of Latvia (LU), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
IONS ,Collision-induced dissociation ,Ionic bonding ,Polycyclic aromatic hydrocarbon ,Photochemistry ,ANTHRACENE ,01 natural sciences ,Dissociation (chemistry) ,Isomers ,MOLECULES ,chemistry.chemical_compound ,Fragmentation (mass spectrometry) ,Fragmentation ,0103 physical sciences ,Molecule ,Collisions ,TANDEM MASS-SPECTROMETRY ,Polycyclic Aromatic Hydrocarbons ,Physical and Theoretical Chemistry ,COLLISION-INDUCED DISSOCIATION ,010303 astronomy & astrophysics ,Instrumentation ,Spectroscopy ,Non-statistical fragmentation ,chemistry.chemical_classification ,Anthracene ,Polycyclic Aromatic Hydrocarbons PAHs ,[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus] ,010401 analytical chemistry ,Condensed Matter Physics ,0104 chemical sciences ,DIFFERENTIATION ,chemistry ,IONIZATION ,CATIONS ,GROWTH ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Ground state ,C14H10 - Abstract
We have observed significant differences in the fragmentation patterns of isomeric Polycyclic Aromatic Hydrocarbon (PAH) cations following collisions with helium atoms at center-of-mass energies around 100 eV. This is in contrast to the situation at other collision energies or in photo-absorption experiments where isomeric effects are very weak and where the lowest-energy dissociation channels (H- and C2H2-loss) domihate in statistical fragmentation processes. In the 100 eV range, non-statistical fragmentation also competes and is uniquely linked to losses of single carbon atoms (CHx-losses). We find that such CHx-losses are correlated with the ionic ground state energy within a given group of isomers. We present results for three C16H10+, four C18H12+ and five C20H12+ isomers colliding with He. (C) 2015 The Authors. Published by Elsevier B.V.
- Published
- 2015
47. Photodetachment Studies of Ir− Ions at DESIREE
- Author
-
M. K. Kristiansson, Henning T. Schmidt, Henrik Cederquist, Gustav Eklund, Henning Zettergren, Dag Hanstorp, and J Sundberg
- Subjects
History ,Materials science ,Photochemistry ,Computer Science Applications ,Education ,Ion - Abstract
Synopsis Anions of iridium were stored in the cryogenic storage ring, DESIREE [1, 2, 3] and investigated using laser photodetachment. The ions were stored for up to 2000 seconds and the relaxation of several metastable states were studied by selecting different photon energies. The threshold of the previously not observed 3P2 level is located and the lifetime of this sate is found to be longer than the storage time of the ion beam. We also find that a state exists higher in energy than the previously known level with a lifetime in the range of hundreds of milliseconds.
- Published
- 2020
48. Non-statistical fragmentation of C60 and the formation of endohedral defect fullerenes
- Author
-
Henning Zettergren, Mark H. Stockett, H. Cederquist, Michael Wolf, Michael Gatchell, and H. T. Schmidt
- Subjects
History ,Fullerene ,Fragmentation (mass spectrometry) ,Chemistry ,Photochemistry ,Computer Science Applications ,Education - Abstract
Synopsis We report the first observation of the endohedral defect fullerene complex He@C 59 − and the first measurement of the threshold displacement energy of a fullerene.
- Published
- 2020
49. Final state resolved mutual neutralization of Li+ and D−
- Author
-
Henning Zettergren, Stefan Rosén, P. K. Najeeb, J. Grumer, Henning T. Schmidt, G. Eklund, Paul S. Barklem, and Henrik Cederquist
- Subjects
History ,Materials science ,State (functional analysis) ,Atomic physics ,Neutralization ,Computer Science Applications ,Education - Abstract
Synopsis We have performed a merged beam experiment on mutual neutralization of Li+ and D−, at center of mass energies close to 0 eV using the DESIREE storage rings. The final state channels Li(3s) and Li(3p+3d) are resolved and the branching ratio is found to be more equal than predicted from theoretical models.
- Published
- 2020
50. Vibrational autodetachment from hot copper dimer anions: breakdown of the Born-Oppenheimer approximation
- Author
-
Mark H. Stockett, Henning T. Schmidt, Henning Zettergren, P. K. Najeeb, Klavs Hansen, Henrik Cederquist, Magdalena Kaminska, Stefan Rosén, K. C. Chartkunchand, Gustav Eklund, Alice F. Schmidt-May, and E. K. Anderson
- Subjects
History ,Materials science ,Dimer ,Born–Oppenheimer approximation ,chemistry.chemical_element ,Copper ,Computer Science Applications ,Education ,chemistry.chemical_compound ,symbols.namesake ,chemistry ,Physics::Atomic and Molecular Clusters ,symbols ,Atomic physics - Abstract
Synopsis The decay of hot copper dimer anions is studied in a cryogenic storage ring. We detect atomic anion and neutral products and determine the fragmentation and vibrational autodetachment (VAD) rates separately. For short storage times the dimer anions predominantly decay by fragmentation of highly rotationally excited ions by tunneling through the rotational barrier. For storage times exceeding 100 ms, however, VAD is dominating. This process is driven by the very weak direct coupling between nuclear and electronic degrees of freedom.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.